rsa_arduino/rsa.c_bck
2024-03-05 14:15:03 +01:00

109 lines
2.6 KiB
Plaintext

#include <stdio.h>
#include <stdlib.h>
#include "rsa.h"
#include "prng.h"
void generateKeys(unsigned long *e, unsigned long *d, unsigned long *n){
unsigned long p = prng(25);
unsigned long q = prng(47);
unsigned long phi = 0;
// Generate big numbers of p and q
//generateBigNumber(&p);
//generateBigNumber(&q);
// Check if p and q are prime numbers
if (isPrimeNumber(p) != 0)
prime_number_finder(&p);
if (isPrimeNumber(q) != 0)
prime_number_finder(&q);
// Calculate n
*n = p * q;
// We're going to calcule the Euler's totient
// Our number are prime number, so, phi = (p - 1) * (q - 1)
phi = (p - 1)*(q - 1);
/* We will calculate e for the public key */
generatePublicKey(phi, e);
/* We will calcuate d for the private key */
generatePrivateKey(d, phi, e);
/* For encrypting
m = ( message ** e) % n
exemple!: A -> 0x65
(65 ** 4033) % 6938083 = 1140958
For decrypting
( m ** d) % n
Exemple:
(1140958 ** 830257) % 6938083 = 65
*/
}
static void generateBigNumber(unsigned long *v){
/*if (*v < 100)
*v = *v << 6;
else if (*v >= 100 || *v < 1000)
*v = *v << 4;
else
*v = *v << 2;*/
}
/*
* This function will identify all the divider of the variable a
* with the Euclidean algorithm
*/
static int gcd(unsigned long a, unsigned long b){
// Ou utiliser l'algorithme d'Euclide ?
int done = 0;
while (!done){
if (b == 0)
done = 1;
else{
int tmp = b;
b = a % b;
a = tmp;
}
}
return a;
}
/*
* This function will check if te variable e is a prime number
* is not, we increment the value to 1 and continue until is a prime number
*/
static void prime_number_finder(unsigned long *e){
while(isPrimeNumber(*e) != 0)
*e += 1;
}
static int isPrimeNumber(unsigned long x){
for (int i = 2; i < x; i++){
if (x % i == 0)
return 1;
}
return 0;
}
static unsigned long generatePublicKey(unsigned long phi, unsigned long *e){
// Generate e
*e = prng(61);
//generateBigNumber(e);
// Get the coprime with phi
while ((gcd(phi, *e)) != 1)
*e += 1;
return *e;
}
static unsigned long generatePrivateKey(unsigned long *d, unsigned long phi, unsigned long *e){
// Calculate the modular inverse
int i = 0;
for (i = 0; i <= phi; i++){
if ((i * (*e)) % phi == 1){
*d = i;
break;
}
}
//*d = *e;
return *d;
}