First commit

This commit is contained in:
geoffrey 2024-03-05 14:15:03 +01:00
commit 940e7beb01
9 changed files with 536 additions and 0 deletions

59
RSA_arduino.ino Normal file

@ -0,0 +1,59 @@
#include <stdlib.h>
#include <stdio.h>
#include "rsa.h"
#include "prng.h"
#include "constantes.h"
#include <LiquidCrystal.h>
struct entropy_pool s_entropy;
int sensorValue = 0;
int switchState = 0;
// e -> public key
// d -> private key
unsigned long n, e, d = 0;
// LiquidCrystal(rs, enable, d0, d1, d2, d3, d4, d5, d6, d7)
LiquidCrystal lcd(11, 10, 5, 4, 3, 2);
void setup(){
pinMode(BUTTON, INPUT);
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
Serial.begin(9600);
lcd.begin(16, 2);
lcd.clear();
// Generate our entropy pool
init_entropy();
// Entropy pool if full, the switch on the red LED
digitalWrite(LED_PIN, HIGH);
}
void loop(){
Serial.println("Start generation key");
while(1){
switchState = digitalRead(BUTTON);
// If we push the button, we generate new keys
if (switchState == HIGH){
lcd.clear();
// Now, we can generate our keys
generateKeys(&e, &d, &n);
if (DEBUG){
Serial.println("e: " + String(e));
Serial.println("d: " + String(d));
Serial.println("n: " + String(n));
}
lcd.setCursor(0, 0);
lcd.print("e:" + String(e) + "," + String(n));
lcd.setCursor(0, 1);
lcd.print("d:" + String(d) + "," + String(n));
}
}
}

9
constantes.h Normal file

@ -0,0 +1,9 @@
#ifndef H_CONSTANTES
#define H_CONSTANTES
#define BUTTON 12 // Button pin
#define LED_PIN 13
#define DEBUG 0
#define SENSOR_PIN 0 // Pin A0
#endif

93
prng.cpp Normal file

@ -0,0 +1,93 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include "prng.h"
#include "constantes.h"
#include <Arduino.h>
/*
* Fill the entropy structure with random data
*/
void init_entropy(){
if (DEBUG)
Serial.println("Generation entropy");
// Generate entropy
int sensorValue = 0;
while(s_entropy.pool_size < BUFSIZE){
generateEntropy(s_entropy.position++);
s_entropy.pool_size++;
// Add a delay for avoiding the same value
delay(50);
}
if (DEBUG)
Serial.println("End generation");
}
/*
* Generate a random value from the analog input
* Store the value in the entropy structure at the position specified in argument
*/
static void generateEntropy(int position){
int sensorValue = 0;
while( sensorValue == 0){
sensorValue = analogRead(SENSOR_PIN);
if (sensorValue != 0){
if (DEBUG)
Serial.println("Value: " + String(sensorValue));
if(sensorValue <= 10)
sensorValue = sensorValue << 5;
else if(sensorValue > 10 && sensorValue <= 100)
sensorValue = sensorValue << 4;
s_entropy.buf[position] = sensorValue;
Serial.println("Position: " + String(position));
}
}
}
/*
* For avoiding to reused the seed, we must generate a new one
*/
static unsigned long generateSeed(){
unsigned long seed;
int sensorValue = 0;
if (DEBUG)
Serial.println("Generate seed");
while (sensorValue == 0){
sensorValue = analogRead(SENSOR_PIN);
seed = sensorValue;
if (DEBUG)
Serial.println("Seed: " + String(seed));
}
return seed;
}
/*
* Generate a random data from the entropy pool
*/
unsigned long prng(){
unsigned long p = 0;
unsigned long pos = generateSeed();
pos += ( (pos << 4));
pos ^= ( (pos >> 11));
pos |= (pos << (pos % 15));
pos = pos % 201;
if (pos > BUFSIZE)
pos = pos / 2;
p = s_entropy.buf[pos];
// Replace the old value
generateEntropy(pos);
return p;
}

98
prng.cpp_bck Normal file

@ -0,0 +1,98 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include "prng.h"
#include <Arduino.h>
#define MAX_ENTRIES_ENTROPY 100
void init_entropy(){
struct entropy_pool s_pool;
randomSeed(analogRead(0));
while (s_entropy.pool_size < BUFSIZE){
s_entropy.buf[s_entropy.pool_size++] = random(300);
}
}
// Define a range ???
unsigned long prng(int seed){
//int32_t p = 4242;
unsigned long p = seed;
//p = 4242;
//p ^= p << 3; // XOR
// 1000010010010 -> 4242
// 1000010010010000 -> 33936
// 1001010000000010 -> 37890
//printf("%d\n", p);
// For small value, increase the value ?
p ^= (p << 1) | (p << 2);
// Generate number between 1000 and 5000 ???
// Or to add X bits to have the key number, for instance 32 bits
return p;
}
int prng2 () {
double *pool_entropy = entropy_pool();
int pos = 0;
entropy_cpu_clock(pool_entropy, 0, MAX_ENTRIES_ENTROPY);
pos++;
for(int i = 0; i < MAX_ENTRIES_ENTROPY; i++){
//printf("%f\n", pool_entropy[i]);
}
// Get from pool
// Generate an integer from 0 to 100 (with clock CPU) for instance
// And to pick up to the pool
// Generate entropy with the network ?
free(pool_entropy);
return(0);
}
double *entropy_pool(){
double *pool_entropy = (double *)malloc(sizeof(double) * MAX_ENTRIES_ENTROPY);
if (pool_entropy == NULL){
//printf("Failed to allocate variables\n");
exit(-1);
}
return pool_entropy;
}
void entropy_cpu_clock(double *entropy, int pos, int max){
clock_t start_t, end_t;
double total_t;
double res = 0;
start_t = clock();
//printf("Starting of the program, start_t = %ld\n", start_t);
//printf("Going to scan a big loop, start_t = %ld\n", start_t);
for(int i = 0; i < 10000000; i++) {
}
end_t = clock();
//printf("End of the big loop, end_t = %ld\n", end_t);
total_t = (double)(end_t - start_t) / CLOCKS_PER_SEC;
//printf("Total time taken by CPU: %f\n", total_t );
//printf("Exiting of the program...\n");
entropy[pos] = total_t;
// Test - generate an iteger from 0 to 100
// Multiply the 10 first entries
for (int i = 0; i < 10; i++){
res += entropy[0];
}
//printf("Pos: %f\n", ceil(res * 100));
}

31
prng.h Normal file

@ -0,0 +1,31 @@
#ifndef H_PRNG
#define H_PRNG
#define BUFSIZE 128
struct entropy_pool{
unsigned long buf[BUFSIZE];
int pool_size;
int position;
int pool_count;
};
extern struct entropy_pool s_entropy;
void init_entropy();
static void generateEntropy(int);
static unsigned long generateSeed();
unsigned long prng();
int prng2();
double *entropy_pool();
void entropy_cpu_clock(double *, int, int);
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
}
#endif
#endif

28
prng.h_bck Normal file

@ -0,0 +1,28 @@
#ifndef H_PRNG
#define H_PRNG
#define BUFSIZE 128
struct entropy_pool{
unsigned long buf[BUFSIZE];
int pool_size;
};
extern struct entropy_pool s_entropy;
void init_entropy();
unsigned long prng(int);
int prng2();
static void readDevRandom(char *);
double *entropy_pool();
void entropy_cpu_clock(double *, int, int);
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
}
#endif
#endif

108
rsa.c_bck Normal file

@ -0,0 +1,108 @@
#include <stdio.h>
#include <stdlib.h>
#include "rsa.h"
#include "prng.h"
void generateKeys(unsigned long *e, unsigned long *d, unsigned long *n){
unsigned long p = prng(25);
unsigned long q = prng(47);
unsigned long phi = 0;
// Generate big numbers of p and q
//generateBigNumber(&p);
//generateBigNumber(&q);
// Check if p and q are prime numbers
if (isPrimeNumber(p) != 0)
prime_number_finder(&p);
if (isPrimeNumber(q) != 0)
prime_number_finder(&q);
// Calculate n
*n = p * q;
// We're going to calcule the Euler's totient
// Our number are prime number, so, phi = (p - 1) * (q - 1)
phi = (p - 1)*(q - 1);
/* We will calculate e for the public key */
generatePublicKey(phi, e);
/* We will calcuate d for the private key */
generatePrivateKey(d, phi, e);
/* For encrypting
m = ( message ** e) % n
exemple!: A -> 0x65
(65 ** 4033) % 6938083 = 1140958
For decrypting
( m ** d) % n
Exemple:
(1140958 ** 830257) % 6938083 = 65
*/
}
static void generateBigNumber(unsigned long *v){
/*if (*v < 100)
*v = *v << 6;
else if (*v >= 100 || *v < 1000)
*v = *v << 4;
else
*v = *v << 2;*/
}
/*
* This function will identify all the divider of the variable a
* with the Euclidean algorithm
*/
static int gcd(unsigned long a, unsigned long b){
// Ou utiliser l'algorithme d'Euclide ?
int done = 0;
while (!done){
if (b == 0)
done = 1;
else{
int tmp = b;
b = a % b;
a = tmp;
}
}
return a;
}
/*
* This function will check if te variable e is a prime number
* is not, we increment the value to 1 and continue until is a prime number
*/
static void prime_number_finder(unsigned long *e){
while(isPrimeNumber(*e) != 0)
*e += 1;
}
static int isPrimeNumber(unsigned long x){
for (int i = 2; i < x; i++){
if (x % i == 0)
return 1;
}
return 0;
}
static unsigned long generatePublicKey(unsigned long phi, unsigned long *e){
// Generate e
*e = prng(61);
//generateBigNumber(e);
// Get the coprime with phi
while ((gcd(phi, *e)) != 1)
*e += 1;
return *e;
}
static unsigned long generatePrivateKey(unsigned long *d, unsigned long phi, unsigned long *e){
// Calculate the modular inverse
int i = 0;
for (i = 0; i <= phi; i++){
if ((i * (*e)) % phi == 1){
*d = i;
break;
}
}
//*d = *e;
return *d;
}

88
rsa.cpp Normal file

@ -0,0 +1,88 @@
#include <stdio.h>
#include <stdlib.h>
#include "rsa.h"
#include "prng.h"
/*
* We will generate the public and private RSA key
*/
void generateKeys(unsigned long *e, unsigned long *d, unsigned long *n){
unsigned long p = prng();
unsigned long q = prng();
unsigned long phi = 0;
// Check if p and q are different
if (p == q)
q ^= q << 2;
// Check if p and q are prime numbers
if (isPrimeNumber(p) != 0)
prime_number_finder(&p);
if (isPrimeNumber(q) != 0)
prime_number_finder(&q);
// Calculate n
*n = p * q;
// We're going to calcule the Euler's totient
phi = (p - 1)*(q - 1);
/* We will calculate e for the public key */
generatePublicKey(phi, e);
/* We will calcuate d for the private key */
generatePrivateKey(d, phi, e);
}
/*
* This function will identify all the divider of the variable a
* with the Euclidean algorithm
*/
static int gcd(unsigned long a, unsigned long b){
if (b == 0)
return a;
return gcd(b, a%b);
}
/*
* This function will check if te variable e is a prime number
* is not, we increment the value to 1 and continue until is a prime number
*/
static void prime_number_finder(unsigned long *p){
while(isPrimeNumber(*p) != 0)
*p += 1;
}
/*
* Check if the number specified is a prime number
*/
static int isPrimeNumber(unsigned long x){
for (int i = 2; i < x; i++){
if (x % i == 0)
return 1;
}
return 0;
}
/*
* Generate the public key and need to be coprime with phi(n)
*/
static unsigned long generatePublicKey(unsigned long phi, unsigned long *e){
// Generate e
*e = prng();
while ((gcd(phi, *e)) != 1)
*e += 1;
return *e;
}
/*
* We generate tne private key with the modular inverse of phi(n)
*/
static unsigned long generatePrivateKey(unsigned long *d, unsigned long phi, unsigned long *e){
for (int i = 0; i <= phi; i++){
if ((i * (*e)) % phi == 1){
*d = i;
break;
}
}
return *d;
}

22
rsa.h Normal file

@ -0,0 +1,22 @@
#ifndef H_RSA
#define H_RSA
#include <math.h>
void generateKeys(unsigned long *, unsigned long *, unsigned long *);
#ifdef __cplusplus
extern "C" {
#endif
static void prime_number_finder(unsigned long *);
static int gcd(unsigned long, unsigned long);
static int isPrimeNumber(unsigned long a);
static unsigned long generatePublicKey(unsigned long, unsigned long *);
static unsigned long generatePrivateKey(unsigned long *, unsigned long, unsigned long *);
#ifdef __cplusplus
}
#endif
#endif