cryptotools/Cryptotools/Numbers/carmi.py
2026-01-11 09:19:22 +01:00

178 lines
4.9 KiB
Python

#!/usr/bin/env python3
from Cryptotools.Numbers.primeNumber import gcd, isPrimeNumber
from Cryptotools.lcm import lcm
from Cryptotools.Numbers.coprime import phi
from Cryptotools.Utils.utils import gcd
from sympy import factorint
from functools import reduce
def carmichael_lambda(n: int) -> int:
"""
This function is a carmichael lambda for identifying the smallest integer m
and saisfy this condition: a ** m congrue 1 modulo n
This function is relatively closed with the euler's totient (phi of n)
Args:
n (Integer): found the smallest integer of n
Returns:
REturn the smallest integer of n
"""
# First, factorizing n number
# factorint return a list of prime factors of n
# Base on that theorem:
# https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
factorsN = factorint(n)
"""
The result of the factorint, we have the following:
n = p ** e1, p ** e2, ..., p ** ek
"""
factors = list()
for p, e in factorsN.items():
# Base on the theorem of arithmetic, p is always prime
if isPrimeNumber(p):
if p == 2 and e >= 3:
factors.append(phi(pow(p, e)) // 2)
elif p >= 2 and e > 0:
factors.append(phi(pow(p, e)))
elif p > 2:
factors.append(phi(pow(p, e)))
# Now, we can compute lcm
result = reduce(lcm, factors)
return result
def carmichael_lambda2(n):
"""
Deprecated function
"""
# Get all coprimes with n
coprimes = list()
for a in range(1, n):
if gcd(a, n) == 1:
coprimes.append(a)
# Need to find the smallest value
"""
Need to find the smallest value m. Must to satisfy this condition:
a ** m congrus 1 mod n
"""
for m in range(1, n):
print(f"{m} {a ** m % n}")
print(coprimes)
def carmi_numbers(n):
"""
This function get all GCD of the number if these number are prime or not
Args:
n (Integer): Iterate to n elements
Returns:
Return a list of prime numbers
"""
# https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf
primes = list()
for i in range(2, n - 1):
if gcd(n, i) == i:
if isPrimeNumber(i):
primes.append(i)
return primes
def is_carmichael(n, primes):
"""
This function check if the n number is a carmichael number. The arguments primes at least 3 prime numbers
As it's said in the Carmichael theorem, a carmichael number has three factors and they are all primes: https://en.wikipedia.org/wiki/Carmichael_number
With the Korselt's criterion, to check if the number is a carmichael number p - 1 / n - 1.
Args:
n (Integer): the carmichael number
primes (list): list of prime numbers
Returns:
Boolean of the carmichael's number result
"""
r = True
n = n - 1
if len(primes) < 3:
return False
# Korselt's criterion
for p in primes:
p = p - 1
if n % p != 0:
r = False
break
return r
def is_carmi_number(n) -> bool:
"""
This function check if the number n is a carmichael number (pseudoprime)
Args:
n (Integer): Iterate to n elements
Returns:
Return a Boolean if n is a carmichael number or not. True if yes
"""
j = 0
for i in range(n):
if i ** n % n == i:
j += 1
if j == n:
return True
return False
def generate_carmi_numbers(nbr) -> list:
"""
This function generate carmichael numbers, they are called pseudoprimes
For instance: a = 545, n = 561
gcd(a, n) = 1
pow(a, n - 1) % n = 1
Args:
nbr (Integer): Find all pseudoprimes until nbr is achieves
Returns:
Return the list of pseudoprimes
"""
carmi = list()
count = 0
n = 2
while count < nbr:
# First, we need to find a, coprime with n
for a in range(1, n):
# We check if n is coprime with a
# All integers must be coprime with n, a belong to n
if gcd(a, n) == 1:
# Check if is a carmichael number
# Fermat's little theorem, a ** (n - 1) % n, must be congruent to 1
if pow(a, (n - 1)) % n == 1:
#if (a ** (n - 1)) % n == 1:
#print(f"{gcd(a, n)} {a} {n}")
if n not in carmi:
count += 1
carmi.append(n)
else:
print(f"{gcd(a, n)} {a} {n}")
break
n += 1
print(carmi)
#for cop in range(2, n):
# if gcd(cop, n) == 1:
# coprimes.append(cop)
return carmi