178 lines
4.9 KiB
Python
178 lines
4.9 KiB
Python
#!/usr/bin/env python3
|
|
|
|
from Cryptotools.Numbers.primeNumber import gcd, isPrimeNumber
|
|
from Cryptotools.lcm import lcm
|
|
from Cryptotools.Numbers.coprime import phi
|
|
from Cryptotools.Utils.utils import gcd
|
|
from sympy import factorint
|
|
from functools import reduce
|
|
|
|
|
|
def carmichael_lambda(n: int) -> int:
|
|
"""
|
|
This function is a carmichael lambda for identifying the smallest integer m
|
|
and saisfy this condition: a ** m congrue 1 modulo n
|
|
This function is relatively closed with the euler's totient (phi of n)
|
|
|
|
Args:
|
|
n (Integer): found the smallest integer of n
|
|
|
|
Returns:
|
|
REturn the smallest integer of n
|
|
"""
|
|
|
|
# First, factorizing n number
|
|
# factorint return a list of prime factors of n
|
|
# Base on that theorem:
|
|
# https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
|
|
factorsN = factorint(n)
|
|
|
|
"""
|
|
The result of the factorint, we have the following:
|
|
n = p ** e1, p ** e2, ..., p ** ek
|
|
"""
|
|
|
|
factors = list()
|
|
|
|
for p, e in factorsN.items():
|
|
# Base on the theorem of arithmetic, p is always prime
|
|
if isPrimeNumber(p):
|
|
if p == 2 and e >= 3:
|
|
factors.append(phi(pow(p, e)) // 2)
|
|
elif p >= 2 and e > 0:
|
|
factors.append(phi(pow(p, e)))
|
|
elif p > 2:
|
|
factors.append(phi(pow(p, e)))
|
|
|
|
# Now, we can compute lcm
|
|
result = reduce(lcm, factors)
|
|
|
|
return result
|
|
|
|
def carmichael_lambda2(n):
|
|
"""
|
|
Deprecated function
|
|
"""
|
|
# Get all coprimes with n
|
|
coprimes = list()
|
|
for a in range(1, n):
|
|
if gcd(a, n) == 1:
|
|
coprimes.append(a)
|
|
|
|
# Need to find the smallest value
|
|
"""
|
|
Need to find the smallest value m. Must to satisfy this condition:
|
|
a ** m congrus 1 mod n
|
|
"""
|
|
for m in range(1, n):
|
|
print(f"{m} {a ** m % n}")
|
|
|
|
print(coprimes)
|
|
|
|
def carmi_numbers(n):
|
|
"""
|
|
This function get all GCD of the number if these number are prime or not
|
|
|
|
Args:
|
|
n (Integer): Iterate to n elements
|
|
|
|
Returns:
|
|
Return a list of prime numbers
|
|
"""
|
|
# https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf
|
|
primes = list()
|
|
for i in range(2, n - 1):
|
|
if gcd(n, i) == i:
|
|
if isPrimeNumber(i):
|
|
primes.append(i)
|
|
|
|
return primes
|
|
|
|
def is_carmichael(n, primes):
|
|
"""
|
|
This function check if the n number is a carmichael number. The arguments primes at least 3 prime numbers
|
|
As it's said in the Carmichael theorem, a carmichael number has three factors and they are all primes: https://en.wikipedia.org/wiki/Carmichael_number
|
|
With the Korselt's criterion, to check if the number is a carmichael number p - 1 / n - 1.
|
|
|
|
Args:
|
|
n (Integer): the carmichael number
|
|
primes (list): list of prime numbers
|
|
|
|
Returns:
|
|
Boolean of the carmichael's number result
|
|
"""
|
|
r = True
|
|
n = n - 1
|
|
|
|
if len(primes) < 3:
|
|
return False
|
|
|
|
# Korselt's criterion
|
|
for p in primes:
|
|
p = p - 1
|
|
if n % p != 0:
|
|
r = False
|
|
break
|
|
return r
|
|
|
|
def is_carmi_number(n) -> bool:
|
|
"""
|
|
This function check if the number n is a carmichael number (pseudoprime)
|
|
|
|
Args:
|
|
n (Integer): Iterate to n elements
|
|
|
|
Returns:
|
|
Return a Boolean if n is a carmichael number or not. True if yes
|
|
"""
|
|
j = 0
|
|
for i in range(n):
|
|
if i ** n % n == i:
|
|
j += 1
|
|
if j == n:
|
|
return True
|
|
return False
|
|
|
|
def generate_carmi_numbers(nbr) -> list:
|
|
"""
|
|
This function generate carmichael numbers, they are called pseudoprimes
|
|
For instance: a = 545, n = 561
|
|
gcd(a, n) = 1
|
|
pow(a, n - 1) % n = 1
|
|
|
|
Args:
|
|
nbr (Integer): Find all pseudoprimes until nbr is achieves
|
|
|
|
Returns:
|
|
Return the list of pseudoprimes
|
|
"""
|
|
carmi = list()
|
|
|
|
count = 0
|
|
n = 2
|
|
while count < nbr:
|
|
# First, we need to find a, coprime with n
|
|
for a in range(1, n):
|
|
# We check if n is coprime with a
|
|
# All integers must be coprime with n, a belong to n
|
|
if gcd(a, n) == 1:
|
|
# Check if is a carmichael number
|
|
# Fermat's little theorem, a ** (n - 1) % n, must be congruent to 1
|
|
if pow(a, (n - 1)) % n == 1:
|
|
#if (a ** (n - 1)) % n == 1:
|
|
#print(f"{gcd(a, n)} {a} {n}")
|
|
if n not in carmi:
|
|
count += 1
|
|
carmi.append(n)
|
|
else:
|
|
print(f"{gcd(a, n)} {a} {n}")
|
|
|
|
break
|
|
n += 1
|
|
print(carmi)
|
|
#for cop in range(2, n):
|
|
# if gcd(cop, n) == 1:
|
|
# coprimes.append(cop)
|
|
|
|
return carmi
|