1553 lines
57 KiB
C
1553 lines
57 KiB
C
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership.
|
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
* (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* Apache example_hooks module. Provide demonstrations of how modules do things.
|
|
* It is not meant to be used in a production server. Since it participates
|
|
* in all of the processing phases, it could conceivable interfere with
|
|
* the proper operation of other modules -- particularly the ones related
|
|
* to security.
|
|
*
|
|
* In the interest of brevity, all functions and structures internal to
|
|
* this module, but which may have counterparts in *real* modules, are
|
|
* prefixed with 'x_' instead of 'example_'.
|
|
*
|
|
* To use mod_example_hooks, configure the Apache build with
|
|
* --enable-example-hooks and compile. Set up a <Location> block in your
|
|
* configuration file like so:
|
|
*
|
|
* <Location /example>
|
|
* SetHandler example-hooks-handler
|
|
* </Location>
|
|
*
|
|
* When you look at that location on your server, you will see a backtrace of
|
|
* the callbacks that have been invoked up to that point. See the ErrorLog for
|
|
* more information on code paths that touch mod_example_hooks.
|
|
*
|
|
* IMPORTANT NOTES
|
|
* ===============
|
|
*
|
|
* Do NOT use this module on a production server. It attaches itself to every
|
|
* phase of the server runtime operations including startup, shutdown and
|
|
* request processing, and produces copious amounts of logging data. This will
|
|
* negatively affect server performance.
|
|
*
|
|
* Do NOT use mod_example_hooks as the basis for your own code. This module
|
|
* implements every callback hook offered by the Apache core, and your
|
|
* module will almost certainly not have to implement this much. If you
|
|
* want a simple module skeleton to start development, use apxs -g.
|
|
*
|
|
* XXX TO DO XXX
|
|
* =============
|
|
*
|
|
* * Enable HTML backtrace entries for more callbacks that are not directly
|
|
* associated with a request
|
|
* * Make sure every callback that posts an HTML backtrace entry does so in the * right category, so nothing gets overwritten
|
|
* * Implement some logic to show what happens in the parent, and what in the
|
|
* child(ren)
|
|
*/
|
|
|
|
#include "httpd.h"
|
|
#include "http_config.h"
|
|
#include "http_core.h"
|
|
#include "http_log.h"
|
|
#include "http_main.h"
|
|
#include "http_protocol.h"
|
|
#include "http_request.h"
|
|
#include "util_script.h"
|
|
#include "http_connection.h"
|
|
#ifdef HAVE_UNIX_SUEXEC
|
|
#include "unixd.h"
|
|
#endif
|
|
#include "scoreboard.h"
|
|
#include "mpm_common.h"
|
|
|
|
#include "apr_strings.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* */
|
|
/* Data declarations. */
|
|
/* */
|
|
/* Here are the static cells and structure declarations private to our */
|
|
/* module. */
|
|
/* */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Sample configuration record. Used for both per-directory and per-server
|
|
* configuration data.
|
|
*
|
|
* It's perfectly reasonable to have two different structures for the two
|
|
* different environments. The same command handlers will be called for
|
|
* both, though, so the handlers need to be able to tell them apart. One
|
|
* possibility is for both structures to start with an int which is 0 for
|
|
* one and 1 for the other.
|
|
*
|
|
* Note that while the per-directory and per-server configuration records are
|
|
* available to most of the module handlers, they should be treated as
|
|
* READ-ONLY by all except the command and merge handlers. Sometimes handlers
|
|
* are handed a record that applies to the current location by implication or
|
|
* inheritance, and modifying it will change the rules for other locations.
|
|
*/
|
|
typedef struct x_cfg {
|
|
int cmode; /* Environment to which record applies
|
|
* (directory, server, or combination).
|
|
*/
|
|
#define CONFIG_MODE_SERVER 1
|
|
#define CONFIG_MODE_DIRECTORY 2
|
|
#define CONFIG_MODE_COMBO 3 /* Shouldn't ever happen. */
|
|
int local; /* Boolean: "Example" directive declared
|
|
* here?
|
|
*/
|
|
int congenital; /* Boolean: did we inherit an "Example"? */
|
|
char *trace; /* Pointer to trace string. */
|
|
char *loc; /* Location to which this record applies. */
|
|
} x_cfg;
|
|
|
|
/*
|
|
* String pointer to hold the startup trace. No harm working with a global until
|
|
* the server is (may be) multi-threaded.
|
|
*/
|
|
static const char *trace = NULL;
|
|
|
|
/*
|
|
* Declare ourselves so the configuration routines can find and know us.
|
|
* We'll fill it in at the end of the module.
|
|
*/
|
|
module AP_MODULE_DECLARE_DATA example_hooks_module;
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* */
|
|
/* The following pseudo-prototype declarations illustrate the parameters */
|
|
/* passed to command handlers for the different types of directive */
|
|
/* syntax. If an argument was specified in the directive definition */
|
|
/* (look for "command_rec" below), it's available to the command handler */
|
|
/* via the (void *) info field in the cmd_parms argument passed to the */
|
|
/* handler (cmd->info for the examples below). */
|
|
/* */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Command handler for a NO_ARGS directive. Declared in the command_rec
|
|
* list with
|
|
* AP_INIT_NO_ARGS("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_NO_ARGS(cmd_parms *cmd, void *mconfig);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a RAW_ARGS directive. The "args" argument is the text
|
|
* of the commandline following the directive itself. Declared in the
|
|
* command_rec list with
|
|
* AP_INIT_RAW_ARGS("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_RAW_ARGS(cmd_parms *cmd, void *mconfig,
|
|
* const char *args);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a FLAG directive. The single parameter is passed in
|
|
* "bool", which is either zero or not for Off or On respectively.
|
|
* Declared in the command_rec list with
|
|
* AP_INIT_FLAG("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_FLAG(cmd_parms *cmd, void *mconfig, int bool);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a TAKE1 directive. The single parameter is passed in
|
|
* "word1". Declared in the command_rec list with
|
|
* AP_INIT_TAKE1("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_TAKE1(cmd_parms *cmd, void *mconfig,
|
|
* char *word1);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a TAKE2 directive. TAKE2 commands must always have
|
|
* exactly two arguments. Declared in the command_rec list with
|
|
* AP_INIT_TAKE2("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_TAKE2(cmd_parms *cmd, void *mconfig,
|
|
* char *word1, char *word2);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a TAKE3 directive. Like TAKE2, these must have exactly
|
|
* three arguments, or the parser complains and doesn't bother calling us.
|
|
* Declared in the command_rec list with
|
|
* AP_INIT_TAKE3("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_TAKE3(cmd_parms *cmd, void *mconfig,
|
|
* char *word1, char *word2, char *word3);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a TAKE12 directive. These can take either one or two
|
|
* arguments.
|
|
* - word2 is a NULL pointer if no second argument was specified.
|
|
* Declared in the command_rec list with
|
|
* AP_INIT_TAKE12("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_TAKE12(cmd_parms *cmd, void *mconfig,
|
|
* char *word1, char *word2);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a TAKE123 directive. A TAKE123 directive can be given,
|
|
* as might be expected, one, two, or three arguments.
|
|
* - word2 is a NULL pointer if no second argument was specified.
|
|
* - word3 is a NULL pointer if no third argument was specified.
|
|
* Declared in the command_rec list with
|
|
* AP_INIT_TAKE123("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_TAKE123(cmd_parms *cmd, void *mconfig,
|
|
* char *word1, char *word2, char *word3);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a TAKE13 directive. Either one or three arguments are
|
|
* permitted - no two-parameters-only syntax is allowed.
|
|
* - word2 and word3 are NULL pointers if only one argument was specified.
|
|
* Declared in the command_rec list with
|
|
* AP_INIT_TAKE13("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_TAKE13(cmd_parms *cmd, void *mconfig,
|
|
* char *word1, char *word2, char *word3);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a TAKE23 directive. At least two and as many as three
|
|
* arguments must be specified.
|
|
* - word3 is a NULL pointer if no third argument was specified.
|
|
* Declared in the command_rec list with
|
|
* AP_INIT_TAKE23("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_TAKE23(cmd_parms *cmd, void *mconfig,
|
|
* char *word1, char *word2, char *word3);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a ITERATE directive.
|
|
* - Handler is called once for each of n arguments given to the directive.
|
|
* - word1 points to each argument in turn.
|
|
* Declared in the command_rec list with
|
|
* AP_INIT_ITERATE("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_ITERATE(cmd_parms *cmd, void *mconfig,
|
|
* char *word1);
|
|
*/
|
|
|
|
/*
|
|
* Command handler for a ITERATE2 directive.
|
|
* - Handler is called once for each of the second and subsequent arguments
|
|
* given to the directive.
|
|
* - word1 is the same for each call for a particular directive instance (the
|
|
* first argument).
|
|
* - word2 points to each of the second and subsequent arguments in turn.
|
|
* Declared in the command_rec list with
|
|
* AP_INIT_ITERATE2("directive", function, mconfig, where, help)
|
|
*
|
|
* static const char *handle_ITERATE2(cmd_parms *cmd, void *mconfig,
|
|
* char *word1, char *word2);
|
|
*/
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* */
|
|
/* These routines are strictly internal to this module, and support its */
|
|
/* operation. They are not referenced by any external portion of the */
|
|
/* server. */
|
|
/* */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Locate our directory configuration record for the current request.
|
|
*/
|
|
static x_cfg *our_dconfig(const request_rec *r)
|
|
{
|
|
return (x_cfg *) ap_get_module_config(r->per_dir_config, &example_hooks_module);
|
|
}
|
|
|
|
/*
|
|
* The following utility routines are not used in the module. Don't
|
|
* compile them so -Wall doesn't complain about functions that are
|
|
* defined but not used.
|
|
*/
|
|
#if 0
|
|
/*
|
|
* Locate our server configuration record for the specified server.
|
|
*/
|
|
static x_cfg *our_sconfig(const server_rec *s)
|
|
{
|
|
return (x_cfg *) ap_get_module_config(s->module_config, &example_hooks_module);
|
|
}
|
|
|
|
/*
|
|
* Likewise for our configuration record for the specified request.
|
|
*/
|
|
static x_cfg *our_rconfig(const request_rec *r)
|
|
{
|
|
return (x_cfg *) ap_get_module_config(r->request_config, &example_hooks_module);
|
|
}
|
|
#endif /* if 0 */
|
|
|
|
/*
|
|
* Likewise for our configuration record for a connection.
|
|
*/
|
|
static x_cfg *our_cconfig(const conn_rec *c)
|
|
{
|
|
return (x_cfg *) ap_get_module_config(c->conn_config, &example_hooks_module);
|
|
}
|
|
|
|
/*
|
|
* You *could* change the following if you wanted to see the calling
|
|
* sequence reported in the server's error_log, but beware - almost all of
|
|
* these co-routines are called for every single request, and the impact
|
|
* on the size (and readability) of the error_log is considerable.
|
|
*/
|
|
#ifndef EXAMPLE_LOG_EACH
|
|
#define EXAMPLE_LOG_EACH 0
|
|
#endif
|
|
|
|
#if EXAMPLE_LOG_EACH
|
|
static void example_log_each(apr_pool_t *p, server_rec *s, const char *note)
|
|
{
|
|
if (s != NULL) {
|
|
ap_log_error(APLOG_MARK, APLOG_DEBUG, 0, s, APLOGNO(02991)
|
|
"mod_example_hooks: %s", note);
|
|
}
|
|
else {
|
|
apr_file_t *out = NULL;
|
|
apr_file_open_stderr(&out, p);
|
|
apr_file_printf(out, "mod_example_hooks traced in non-loggable "
|
|
"context: %s\n", note);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This utility routine traces the hooks called when the server starts up.
|
|
* It leaves a trace in a global variable, so it should not be called from
|
|
* a hook handler that runs in a multi-threaded situation.
|
|
*/
|
|
|
|
static void trace_startup(apr_pool_t *p, server_rec *s, x_cfg *mconfig,
|
|
const char *note)
|
|
{
|
|
const char *sofar;
|
|
char *where, *addon;
|
|
|
|
#if EXAMPLE_LOG_EACH
|
|
example_log_each(p, s, note);
|
|
#endif
|
|
|
|
/*
|
|
* If we weren't passed a configuration record, we can't figure out to
|
|
* what location this call applies. This only happens for co-routines
|
|
* that don't operate in a particular directory or server context. If we
|
|
* got a valid record, extract the location (directory or server) to which
|
|
* it applies.
|
|
*/
|
|
where = (mconfig != NULL) ? mconfig->loc : "nowhere";
|
|
where = (where != NULL) ? where : "";
|
|
|
|
addon = apr_pstrcat(p,
|
|
" <li>\n"
|
|
" <dl>\n"
|
|
" <dt><samp>", note, "</samp></dt>\n"
|
|
" <dd><samp>[", where, "]</samp></dd>\n"
|
|
" </dl>\n"
|
|
" </li>\n",
|
|
NULL);
|
|
|
|
/*
|
|
* Make sure that we start with a valid string, even if we have never been
|
|
* called.
|
|
*/
|
|
sofar = (trace == NULL) ? "" : trace;
|
|
|
|
trace = apr_pstrcat(p, sofar, addon, NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* This utility route traces the hooks called as a request is handled.
|
|
* It takes the current request as argument
|
|
*/
|
|
#define TRACE_NOTE "example-hooks-trace"
|
|
|
|
static void trace_request(const request_rec *r, const char *note)
|
|
{
|
|
const char *trace_copy, *sofar;
|
|
char *addon, *where;
|
|
x_cfg *cfg;
|
|
|
|
#if EXAMPLE_LOG_EACH
|
|
example_log_each(r->pool, r->server, note);
|
|
#endif
|
|
|
|
if ((sofar = apr_table_get(r->notes, TRACE_NOTE)) == NULL) {
|
|
sofar = "";
|
|
}
|
|
|
|
cfg = our_dconfig(r);
|
|
|
|
where = (cfg != NULL) ? cfg->loc : "nowhere";
|
|
where = (where != NULL) ? where : "";
|
|
|
|
addon = apr_pstrcat(r->pool,
|
|
" <li>\n"
|
|
" <dl>\n"
|
|
" <dt><samp>", note, "</samp></dt>\n"
|
|
" <dd><samp>[", where, "]</samp></dd>\n"
|
|
" </dl>\n"
|
|
" </li>\n",
|
|
NULL);
|
|
|
|
trace_copy = apr_pstrcat(r->pool, sofar, addon, NULL);
|
|
apr_table_set(r->notes, TRACE_NOTE, trace_copy);
|
|
}
|
|
|
|
/*
|
|
* This utility routine traces the hooks called while processing a
|
|
* Connection. Its trace is kept in the pool notes of the pool associated
|
|
* with the Connection.
|
|
*/
|
|
|
|
/*
|
|
* Key to get and set the userdata. We should be able to get away
|
|
* with a constant key, since in prefork mode the process will have
|
|
* the connection and its pool to itself entirely, and in
|
|
* multi-threaded mode each connection will have its own pool.
|
|
*/
|
|
#define CONN_NOTE "example-hooks-connection"
|
|
|
|
static void trace_connection(conn_rec *c, const char *note)
|
|
{
|
|
const char *trace_copy, *sofar;
|
|
char *addon, *where;
|
|
void *data;
|
|
x_cfg *cfg;
|
|
|
|
#if EXAMPLE_LOG_EACH
|
|
example_log_each(c->pool, c->base_server, note);
|
|
#endif
|
|
|
|
cfg = our_cconfig(c);
|
|
|
|
where = (cfg != NULL) ? cfg->loc : "nowhere";
|
|
where = (where != NULL) ? where : "";
|
|
|
|
addon = apr_pstrcat(c->pool,
|
|
" <li>\n"
|
|
" <dl>\n"
|
|
" <dt><samp>", note, "</samp></dt>\n"
|
|
" <dd><samp>[", where, "]</samp></dd>\n"
|
|
" </dl>\n"
|
|
" </li>\n",
|
|
NULL);
|
|
|
|
/* Find existing notes and copy */
|
|
apr_pool_userdata_get(&data, CONN_NOTE, c->pool);
|
|
sofar = (data == NULL) ? "" : (const char *) data;
|
|
|
|
/* Tack addon onto copy */
|
|
trace_copy = apr_pstrcat(c->pool, sofar, addon, NULL);
|
|
|
|
/*
|
|
* Stash copy back into pool notes. This call has a cleanup
|
|
* parameter, but we're not using it because the string has been
|
|
* allocated from that same pool. There is also an unused return
|
|
* value: we have nowhere to communicate any error that might
|
|
* occur, and will have to check for the existence of this data on
|
|
* the other end.
|
|
*/
|
|
apr_pool_userdata_set((const void *) trace_copy, CONN_NOTE,
|
|
NULL, c->pool);
|
|
}
|
|
|
|
static void trace_nocontext(apr_pool_t *p, const char *file, int line,
|
|
const char *note)
|
|
{
|
|
/*
|
|
* Since we have no request or connection to trace, or any idea
|
|
* from where this routine was called, there's really not much we
|
|
* can do. If we are not logging everything by way of the
|
|
* EXAMPLE_LOG_EACH constant, do nothing in this routine.
|
|
*/
|
|
|
|
#ifdef EXAMPLE_LOG_EACH
|
|
ap_log_perror(file, line, APLOG_MODULE_INDEX, APLOG_NOTICE, 0, p, "%s", note);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* We prototyped the various syntax for command handlers (routines that */
|
|
/* are called when the configuration parser detects a directive declared */
|
|
/* by our module) earlier. Now we actually declare a "real" routine that */
|
|
/* will be invoked by the parser when our "real" directive is */
|
|
/* encountered. */
|
|
/* */
|
|
/* If a command handler encounters a problem processing the directive, it */
|
|
/* signals this fact by returning a non-NULL pointer to a string */
|
|
/* describing the problem. */
|
|
/* */
|
|
/* The magic return value DECLINE_CMD is used to deal with directives */
|
|
/* that might be declared by multiple modules. If the command handler */
|
|
/* returns NULL, the directive was processed; if it returns DECLINE_CMD, */
|
|
/* the next module (if any) that declares the directive is given a chance */
|
|
/* at it. If it returns any other value, it's treated as the text of an */
|
|
/* error message. */
|
|
/*--------------------------------------------------------------------------*/
|
|
/*
|
|
* Command handler for the NO_ARGS "Example" directive. All we do is mark the
|
|
* call in the trace log, and flag the applicability of the directive to the
|
|
* current location in that location's configuration record.
|
|
*/
|
|
static const char *cmd_example(cmd_parms *cmd, void *mconfig)
|
|
{
|
|
x_cfg *cfg = (x_cfg *) mconfig;
|
|
|
|
/*
|
|
* "Example Wuz Here"
|
|
*/
|
|
cfg->local = 1;
|
|
trace_startup(cmd->pool, cmd->server, cfg, "cmd_example()");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This function gets called to create a per-directory configuration
|
|
* record. This will be called for the "default" server environment, and for
|
|
* each directory for which the parser finds any of our directives applicable.
|
|
* If a directory doesn't have any of our directives involved (i.e., they
|
|
* aren't in the .htaccess file, or a <Location>, <Directory>, or related
|
|
* block), this routine will *not* be called - the configuration for the
|
|
* closest ancestor is used.
|
|
*
|
|
* The return value is a pointer to the created module-specific
|
|
* structure.
|
|
*/
|
|
static void *x_create_dir_config(apr_pool_t *p, char *dirspec)
|
|
{
|
|
x_cfg *cfg;
|
|
char *dname = dirspec;
|
|
char *note;
|
|
|
|
/*
|
|
* Allocate the space for our record from the pool supplied.
|
|
*/
|
|
cfg = (x_cfg *) apr_pcalloc(p, sizeof(x_cfg));
|
|
/*
|
|
* Now fill in the defaults. If there are any `parent' configuration
|
|
* records, they'll get merged as part of a separate callback.
|
|
*/
|
|
cfg->local = 0;
|
|
cfg->congenital = 0;
|
|
cfg->cmode = CONFIG_MODE_DIRECTORY;
|
|
/*
|
|
* Finally, add our trace to the callback list.
|
|
*/
|
|
dname = (dname != NULL) ? dname : "";
|
|
cfg->loc = apr_pstrcat(p, "DIR(", dname, ")", NULL);
|
|
note = apr_psprintf(p, "x_create_dir_config(p == %pp, dirspec == %s)",
|
|
(void*) p, dirspec);
|
|
trace_startup(p, NULL, cfg, note);
|
|
return (void *) cfg;
|
|
}
|
|
|
|
/*
|
|
* This function gets called to merge two per-directory configuration
|
|
* records. This is typically done to cope with things like .htaccess files
|
|
* or <Location> directives for directories that are beneath one for which a
|
|
* configuration record was already created. The routine has the
|
|
* responsibility of creating a new record and merging the contents of the
|
|
* other two into it appropriately. If the module doesn't declare a merge
|
|
* routine, the record for the closest ancestor location (that has one) is
|
|
* used exclusively.
|
|
*
|
|
* The routine MUST NOT modify any of its arguments!
|
|
*
|
|
* The return value is a pointer to the created module-specific structure
|
|
* containing the merged values.
|
|
*/
|
|
static void *x_merge_dir_config(apr_pool_t *p, void *parent_conf,
|
|
void *newloc_conf)
|
|
{
|
|
|
|
x_cfg *merged_config = (x_cfg *) apr_pcalloc(p, sizeof(x_cfg));
|
|
x_cfg *pconf = (x_cfg *) parent_conf;
|
|
x_cfg *nconf = (x_cfg *) newloc_conf;
|
|
char *note;
|
|
|
|
/*
|
|
* Some things get copied directly from the more-specific record, rather
|
|
* than getting merged.
|
|
*/
|
|
merged_config->local = nconf->local;
|
|
merged_config->loc = apr_pstrdup(p, nconf->loc);
|
|
/*
|
|
* Others, like the setting of the `congenital' flag, get ORed in. The
|
|
* setting of that particular flag, for instance, is TRUE if it was ever
|
|
* true anywhere in the upstream configuration.
|
|
*/
|
|
merged_config->congenital = (pconf->congenital | pconf->local);
|
|
/*
|
|
* If we're merging records for two different types of environment (server
|
|
* and directory), mark the new record appropriately. Otherwise, inherit
|
|
* the current value.
|
|
*/
|
|
merged_config->cmode =
|
|
(pconf->cmode == nconf->cmode) ? pconf->cmode : CONFIG_MODE_COMBO;
|
|
/*
|
|
* Now just record our being called in the trace list. Include the
|
|
* locations we were asked to merge.
|
|
*/
|
|
note = apr_psprintf(p, "x_merge_dir_config(p == %pp, parent_conf == "
|
|
"%pp, newloc_conf == %pp)", (void*) p,
|
|
(void*) parent_conf, (void*) newloc_conf);
|
|
trace_startup(p, NULL, merged_config, note);
|
|
return (void *) merged_config;
|
|
}
|
|
|
|
/*
|
|
* This function gets called to create a per-server configuration
|
|
* record. It will always be called for the "default" server.
|
|
*
|
|
* The return value is a pointer to the created module-specific
|
|
* structure.
|
|
*/
|
|
static void *x_create_server_config(apr_pool_t *p, server_rec *s)
|
|
{
|
|
|
|
x_cfg *cfg;
|
|
char *sname = s->server_hostname;
|
|
|
|
/*
|
|
* As with the x_create_dir_config() reoutine, we allocate and fill
|
|
* in an empty record.
|
|
*/
|
|
cfg = (x_cfg *) apr_pcalloc(p, sizeof(x_cfg));
|
|
cfg->local = 0;
|
|
cfg->congenital = 0;
|
|
cfg->cmode = CONFIG_MODE_SERVER;
|
|
/*
|
|
* Note that we were called in the trace list.
|
|
*/
|
|
sname = (sname != NULL) ? sname : "";
|
|
cfg->loc = apr_pstrcat(p, "SVR(", sname, ")", NULL);
|
|
trace_startup(p, s, cfg, "x_create_server_config()");
|
|
return (void *) cfg;
|
|
}
|
|
|
|
/*
|
|
* This function gets called to merge two per-server configuration
|
|
* records. This is typically done to cope with things like virtual hosts and
|
|
* the default server configuration The routine has the responsibility of
|
|
* creating a new record and merging the contents of the other two into it
|
|
* appropriately. If the module doesn't declare a merge routine, the more
|
|
* specific existing record is used exclusively.
|
|
*
|
|
* The routine MUST NOT modify any of its arguments!
|
|
*
|
|
* The return value is a pointer to the created module-specific structure
|
|
* containing the merged values.
|
|
*/
|
|
static void *x_merge_server_config(apr_pool_t *p, void *server1_conf,
|
|
void *server2_conf)
|
|
{
|
|
|
|
x_cfg *merged_config = (x_cfg *) apr_pcalloc(p, sizeof(x_cfg));
|
|
x_cfg *s1conf = (x_cfg *) server1_conf;
|
|
x_cfg *s2conf = (x_cfg *) server2_conf;
|
|
char *note;
|
|
|
|
/*
|
|
* Our inheritance rules are our own, and part of our module's semantics.
|
|
* Basically, just note whence we came.
|
|
*/
|
|
merged_config->cmode =
|
|
(s1conf->cmode == s2conf->cmode) ? s1conf->cmode : CONFIG_MODE_COMBO;
|
|
merged_config->local = s2conf->local;
|
|
merged_config->congenital = (s1conf->congenital | s1conf->local);
|
|
merged_config->loc = apr_pstrdup(p, s2conf->loc);
|
|
/*
|
|
* Trace our call, including what we were asked to merge.
|
|
*/
|
|
note = apr_pstrcat(p, "x_merge_server_config(\"", s1conf->loc, "\",\"",
|
|
s2conf->loc, "\")", NULL);
|
|
trace_startup(p, NULL, merged_config, note);
|
|
return (void *) merged_config;
|
|
}
|
|
|
|
|
|
/*--------------------------------------------------------------------------*
|
|
* *
|
|
* Now let's declare routines for each of the callback hooks in order. *
|
|
* (That's the order in which they're listed in the callback list, *not *
|
|
* the order in which the server calls them! See the command_rec *
|
|
* declaration near the bottom of this file.) Note that these may be *
|
|
* called for situations that don't relate primarily to our function - in *
|
|
* other words, the fixup handler shouldn't assume that the request has *
|
|
* to do with "example_hooks" stuff. *
|
|
* *
|
|
* With the exception of the content handler, all of our routines will be *
|
|
* called for each request, unless an earlier handler from another module *
|
|
* aborted the sequence. *
|
|
* *
|
|
* There are three types of hooks (see include/ap_config.h): *
|
|
* *
|
|
* VOID : No return code, run all handlers declared by any module *
|
|
* RUN_FIRST : Run all handlers until one returns something other *
|
|
* than DECLINED. Hook runner result is result of last callback *
|
|
* RUN_ALL : Run all handlers until one returns something other than OK *
|
|
* or DECLINED. The hook runner returns that other value. If *
|
|
* all hooks run, the hook runner returns OK. *
|
|
* *
|
|
* Handlers that are declared as "int" can return the following: *
|
|
* *
|
|
* OK Handler accepted the request and did its thing with it. *
|
|
* DECLINED Handler took no action. *
|
|
* HTTP_mumble Handler looked at request and found it wanting. *
|
|
* *
|
|
* See include/httpd.h for a list of HTTP_mumble status codes. Handlers *
|
|
* that are not declared as int return a valid pointer, or NULL if they *
|
|
* DECLINE to handle their phase for that specific request. Exceptions, if *
|
|
* any, are noted with each routine. *
|
|
*--------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* This routine is called before the server processes the configuration
|
|
* files. There is no return value.
|
|
*/
|
|
static int x_pre_config(apr_pool_t *pconf, apr_pool_t *plog,
|
|
apr_pool_t *ptemp)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_startup(pconf, NULL, NULL, "x_pre_config()");
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* This routine is called after the server processes the configuration
|
|
* files. At this point the module may review and adjust its configuration
|
|
* settings in relation to one another and report any problems. On restart,
|
|
* this routine will be called twice, once in the startup process (which
|
|
* exits shortly after this phase) and once in the running server process.
|
|
*
|
|
* The return value is OK, DECLINED, or HTTP_mumble. If we return OK, the
|
|
* server will still call any remaining modules with an handler for this
|
|
* phase.
|
|
*/
|
|
static int x_check_config(apr_pool_t *pconf, apr_pool_t *plog,
|
|
apr_pool_t *ptemp, server_rec *s)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_startup(pconf, s, NULL, "x_check_config()");
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* This routine is called when the -t command-line option is supplied.
|
|
* It executes only once, in the startup process, after the check_config
|
|
* phase and just before the process exits. At this point the module
|
|
* may output any information useful in configuration testing.
|
|
*
|
|
* This is a VOID hook: all defined handlers get called.
|
|
*/
|
|
static void x_test_config(apr_pool_t *pconf, server_rec *s)
|
|
{
|
|
apr_file_t *out = NULL;
|
|
|
|
apr_file_open_stderr(&out, pconf);
|
|
|
|
apr_file_printf(out, "Example module configuration test routine\n");
|
|
|
|
trace_startup(pconf, s, NULL, "x_test_config()");
|
|
}
|
|
|
|
/*
|
|
* This routine is called to perform any module-specific log file
|
|
* openings. It is invoked just before the post_config phase
|
|
*
|
|
* The return value is OK, DECLINED, or HTTP_mumble. If we return OK, the
|
|
* server will still call any remaining modules with an handler for this
|
|
* phase.
|
|
*/
|
|
static int x_open_logs(apr_pool_t *pconf, apr_pool_t *plog,
|
|
apr_pool_t *ptemp, server_rec *s)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_startup(pconf, s, NULL, "x_open_logs()");
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* This routine is called after the server finishes the configuration
|
|
* process. At this point the module may review and adjust its configuration
|
|
* settings in relation to one another and report any problems. On restart,
|
|
* this routine will be called only once, in the running server process.
|
|
*
|
|
* The return value is OK, DECLINED, or HTTP_mumble. If we return OK, the
|
|
* server will still call any remaining modules with an handler for this
|
|
* phase.
|
|
*/
|
|
static int x_post_config(apr_pool_t *pconf, apr_pool_t *plog,
|
|
apr_pool_t *ptemp, server_rec *s)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_startup(pconf, s, NULL, "x_post_config()");
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* All our process-death routine does is add its trace to the log.
|
|
*/
|
|
static apr_status_t x_child_exit(void *data)
|
|
{
|
|
char *note;
|
|
server_rec *s = data;
|
|
char *sname = s->server_hostname;
|
|
|
|
/*
|
|
* The arbitrary text we add to our trace entry indicates for which server
|
|
* we're being called.
|
|
*/
|
|
sname = (sname != NULL) ? sname : "";
|
|
note = apr_pstrcat(s->process->pool, "x_child_exit(", sname, ")", NULL);
|
|
trace_startup(s->process->pool, s, NULL, note);
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* All our process initialiser does is add its trace to the log.
|
|
*
|
|
* This is a VOID hook: all defined handlers get called.
|
|
*/
|
|
static void x_child_init(apr_pool_t *p, server_rec *s)
|
|
{
|
|
char *note;
|
|
char *sname = s->server_hostname;
|
|
|
|
/*
|
|
* The arbitrary text we add to our trace entry indicates for which server
|
|
* we're being called.
|
|
*/
|
|
sname = (sname != NULL) ? sname : "";
|
|
note = apr_pstrcat(p, "x_child_init(", sname, ")", NULL);
|
|
trace_startup(p, s, NULL, note);
|
|
|
|
apr_pool_cleanup_register(p, s, x_child_exit, x_child_exit);
|
|
}
|
|
|
|
/*
|
|
* The hook runner for ap_hook_http_scheme is aliased to ap_http_scheme(),
|
|
* a routine that the core and other modules call when they need to know
|
|
* the URL scheme for the request. For instance, mod_ssl returns "https"
|
|
* if the server_rec associated with the request has SSL enabled.
|
|
*
|
|
* This hook was named 'ap_hook_http_method' in httpd 2.0.
|
|
*
|
|
* This is a RUN_FIRST hook: the first handler to return a non NULL
|
|
* value aborts the handler chain. The http_core module inserts a
|
|
* fallback handler (with APR_HOOK_REALLY_LAST preference) that returns
|
|
* "http".
|
|
*/
|
|
static const char *x_http_scheme(const request_rec *r)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_request(r, "x_http_scheme()");
|
|
|
|
/* We have no claims to make about the request scheme */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* The runner for this hook is aliased to ap_default_port(), which the
|
|
* core and other modules call when they need to know the default port
|
|
* for a particular server. This is used for instance to omit the
|
|
* port number from a Redirect response Location header URL if the port
|
|
* number is equal to the default port for the service (like 80 for http).
|
|
*
|
|
* This is a RUN_FIRST hook: the first handler to return a non-zero
|
|
* value is the last one executed. The http_core module inserts a
|
|
* fallback handler (with APR_HOOK_REALLY_LAST order specifier) that
|
|
* returns 80.
|
|
*/
|
|
static apr_port_t x_default_port(const request_rec *r)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_request(r, "x_default_port()");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine is called just before the handler gets invoked. It allows
|
|
* a module to insert a previously defined filter into the filter chain.
|
|
*
|
|
* No filter has been defined by this module, so we just log the call
|
|
* and exit.
|
|
*
|
|
* This is a VOID hook: all defined handlers get called.
|
|
*/
|
|
static void x_insert_filter(request_rec *r)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_request(r, "x_insert_filter()");
|
|
}
|
|
|
|
/*
|
|
* This routine is called to insert a previously defined error filter into
|
|
* the filter chain as the request is being processed.
|
|
*
|
|
* For the purpose of this example, we don't have a filter to insert,
|
|
* so just add to the trace and exit.
|
|
*
|
|
* This is a VOID hook: all defined handlers get called.
|
|
*/
|
|
static void x_insert_error_filter(request_rec *r)
|
|
{
|
|
trace_request(r, "x_insert_error_filter()");
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* */
|
|
/* Now we declare our content handlers, which are invoked when the server */
|
|
/* encounters a document which our module is supposed to have a chance to */
|
|
/* see. (See mod_mime's SetHandler and AddHandler directives, and the */
|
|
/* mod_info and mod_status examples, for more details.) */
|
|
/* */
|
|
/* Since content handlers are dumping data directly into the connection */
|
|
/* (using the r*() routines, such as rputs() and rprintf()) without */
|
|
/* intervention by other parts of the server, they need to make */
|
|
/* sure any accumulated HTTP headers are sent first. This is done by */
|
|
/* calling send_http_header(). Otherwise, no header will be sent at all, */
|
|
/* and the output sent to the client will actually be HTTP-uncompliant. */
|
|
/*--------------------------------------------------------------------------*/
|
|
/*
|
|
* Sample content handler. All this does is display the call list that has
|
|
* been built up so far.
|
|
*
|
|
* This routine gets called for every request, unless another handler earlier
|
|
* in the callback chain has already handled the request. It is up to us to
|
|
* test the request_rec->handler field and see whether we are meant to handle
|
|
* this request.
|
|
*
|
|
* The content handler gets to write directly to the client using calls like
|
|
* ap_rputs() and ap_rprintf()
|
|
*
|
|
* This is a RUN_FIRST hook.
|
|
*/
|
|
static int x_handler(request_rec *r)
|
|
{
|
|
x_cfg *dcfg;
|
|
char *note;
|
|
void *conn_data;
|
|
apr_status_t status;
|
|
|
|
dcfg = our_dconfig(r);
|
|
/*
|
|
* Add our trace to the log, and whether we get to write
|
|
* content for this request.
|
|
*/
|
|
note = apr_pstrcat(r->pool, "x_handler(), handler is \"",
|
|
r->handler, "\"", NULL);
|
|
trace_request(r, note);
|
|
|
|
/* If it's not for us, get out as soon as possible. */
|
|
if (strcmp(r->handler, "example-hooks-handler")) {
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* Set the Content-type header. Note that we do not actually have to send
|
|
* the headers: this is done by the http core.
|
|
*/
|
|
ap_set_content_type(r, "text/html");
|
|
/*
|
|
* If we're only supposed to send header information (HEAD request), we're
|
|
* already there.
|
|
*/
|
|
if (r->header_only) {
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* Now send our actual output. Since we tagged this as being
|
|
* "text/html", we need to embed any HTML.
|
|
*/
|
|
ap_rputs(DOCTYPE_HTML_3_2, r);
|
|
ap_rputs("<HTML>\n", r);
|
|
ap_rputs(" <HEAD>\n", r);
|
|
ap_rputs(" <TITLE>mod_example_hooks Module Content-Handler Output\n", r);
|
|
ap_rputs(" </TITLE>\n", r);
|
|
ap_rputs(" </HEAD>\n", r);
|
|
ap_rputs(" <BODY>\n", r);
|
|
ap_rputs(" <H1><SAMP>mod_example_hooks</SAMP> Module Content-Handler Output\n", r);
|
|
ap_rputs(" </H1>\n", r);
|
|
ap_rputs(" <P>\n", r);
|
|
ap_rprintf(r, " Apache HTTP Server version: \"%s\"\n",
|
|
ap_get_server_banner());
|
|
ap_rputs(" <BR>\n", r);
|
|
ap_rprintf(r, " Server built: \"%s\"\n", ap_get_server_built());
|
|
ap_rputs(" </P>\n", r);
|
|
ap_rputs(" <P>\n", r);
|
|
ap_rputs(" The format for the callback trace is:\n", r);
|
|
ap_rputs(" </P>\n", r);
|
|
ap_rputs(" <DL>\n", r);
|
|
ap_rputs(" <DT><EM>n</EM>.<SAMP><routine-name>", r);
|
|
ap_rputs("(<routine-data>)</SAMP>\n", r);
|
|
ap_rputs(" </DT>\n", r);
|
|
ap_rputs(" <DD><SAMP>[<applies-to>]</SAMP>\n", r);
|
|
ap_rputs(" </DD>\n", r);
|
|
ap_rputs(" </DL>\n", r);
|
|
ap_rputs(" <P>\n", r);
|
|
ap_rputs(" The <SAMP><routine-data></SAMP> is supplied by\n", r);
|
|
ap_rputs(" the routine when it requests the trace,\n", r);
|
|
ap_rputs(" and the <SAMP><applies-to></SAMP> is extracted\n", r);
|
|
ap_rputs(" from the configuration record at the time of the trace.\n", r);
|
|
ap_rputs(" <STRONG>SVR()</STRONG> indicates a server environment\n", r);
|
|
ap_rputs(" (blank means the main or default server, otherwise it's\n", r);
|
|
ap_rputs(" the name of the VirtualHost); <STRONG>DIR()</STRONG>\n", r);
|
|
ap_rputs(" indicates a location in the URL or filesystem\n", r);
|
|
ap_rputs(" namespace.\n", r);
|
|
ap_rputs(" </P>\n", r);
|
|
ap_rprintf(r, " <H2>Startup callbacks so far:</H2>\n <OL>\n%s </OL>\n",
|
|
trace);
|
|
ap_rputs(" <H2>Connection-specific callbacks so far:</H2>\n", r);
|
|
|
|
status = apr_pool_userdata_get(&conn_data, CONN_NOTE,
|
|
r->connection->pool);
|
|
if ((status == APR_SUCCESS) && conn_data) {
|
|
ap_rprintf(r, " <OL>\n%s </OL>\n", (char *) conn_data);
|
|
}
|
|
else {
|
|
ap_rputs(" <P>No connection-specific callback information was "
|
|
"retrieved.</P>\n", r);
|
|
}
|
|
|
|
ap_rputs(" <H2>Request-specific callbacks so far:</H2>\n", r);
|
|
ap_rprintf(r, " <OL>\n%s </OL>\n", apr_table_get(r->notes, TRACE_NOTE));
|
|
ap_rputs(" <H2>Environment for <EM>this</EM> call:</H2>\n", r);
|
|
ap_rputs(" <UL>\n", r);
|
|
ap_rprintf(r, " <LI>Applies-to: <SAMP>%s</SAMP>\n </LI>\n", dcfg->loc);
|
|
ap_rprintf(r, " <LI>\"Example\" directive declared here: %s\n </LI>\n",
|
|
(dcfg->local ? "YES" : "NO"));
|
|
ap_rprintf(r, " <LI>\"Example\" inherited: %s\n </LI>\n",
|
|
(dcfg->congenital ? "YES" : "NO"));
|
|
ap_rputs(" </UL>\n", r);
|
|
ap_rputs(" </BODY>\n", r);
|
|
ap_rputs("</HTML>\n", r);
|
|
/*
|
|
* We're all done, so cancel the timeout we set. Since this is probably
|
|
* the end of the request we *could* assume this would be done during
|
|
* post-processing - but it's possible that another handler might be
|
|
* called and inherit our outstanding timer. Not good; to each its own.
|
|
*/
|
|
/*
|
|
* We did what we wanted to do, so tell the rest of the server we
|
|
* succeeded.
|
|
*/
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* The quick_handler hook presents modules with a very powerful opportunity to
|
|
* serve their content in a very early request phase. Note that this handler
|
|
* can not serve any requests from the file system because hooks like
|
|
* map_to_storage have not run. The quick_handler hook also runs before any
|
|
* authentication and access control.
|
|
*
|
|
* This hook is used by mod_cache to serve cached content.
|
|
*
|
|
* This is a RUN_FIRST hook. Return OK if you have served the request,
|
|
* DECLINED if you want processing to continue, or a HTTP_* error code to stop
|
|
* processing the request.
|
|
*/
|
|
static int x_quick_handler(request_rec *r, int lookup_uri)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_request(r, "x_quick_handler()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine is called just after the server accepts the connection,
|
|
* but before it is handed off to a protocol module to be served. The point
|
|
* of this hook is to allow modules an opportunity to modify the connection
|
|
* as soon as possible. The core server uses this phase to setup the
|
|
* connection record based on the type of connection that is being used.
|
|
*
|
|
* This is a RUN_ALL hook.
|
|
*/
|
|
static int x_pre_connection(conn_rec *c, void *csd)
|
|
{
|
|
char *note;
|
|
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
note = apr_psprintf(c->pool, "x_pre_connection(c = %pp, p = %pp)",
|
|
(void*) c, (void*) c->pool);
|
|
trace_connection(c, note);
|
|
|
|
return OK;
|
|
}
|
|
|
|
/* This routine is used to actually process the connection that was received.
|
|
* Only protocol modules should implement this hook, as it gives them an
|
|
* opportunity to replace the standard HTTP processing with processing for
|
|
* some other protocol. Both echo and POP3 modules are available as
|
|
* examples.
|
|
*
|
|
* This is a RUN_FIRST hook.
|
|
*/
|
|
static int x_process_connection(conn_rec *c)
|
|
{
|
|
trace_connection(c, "x_process_connection()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine is called after the request has been read but before any other
|
|
* phases have been processed. This allows us to make decisions based upon
|
|
* the input header fields.
|
|
*
|
|
* This is a HOOK_VOID hook.
|
|
*/
|
|
static void x_pre_read_request(request_rec *r, conn_rec *c)
|
|
{
|
|
/*
|
|
* We don't actually *do* anything here, except note the fact that we were
|
|
* called.
|
|
*/
|
|
trace_request(r, "x_pre_read_request()");
|
|
}
|
|
|
|
/*
|
|
* This routine is called after the request has been read but before any other
|
|
* phases have been processed. This allows us to make decisions based upon
|
|
* the input header fields.
|
|
*
|
|
* This is a RUN_ALL hook.
|
|
*/
|
|
static int x_post_read_request(request_rec *r)
|
|
{
|
|
/*
|
|
* We don't actually *do* anything here, except note the fact that we were
|
|
* called.
|
|
*/
|
|
trace_request(r, "x_post_read_request()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine gives our module an opportunity to translate the URI into an
|
|
* actual filename, before URL decoding happens.
|
|
*
|
|
* This is a RUN_FIRST hook.
|
|
*/
|
|
static int x_pre_translate_name(request_rec *r)
|
|
{
|
|
/*
|
|
* We don't actually *do* anything here, except note the fact that we were
|
|
* called.
|
|
*/
|
|
trace_request(r, "x_pre_translate_name()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine gives our module an opportunity to translate the URI into an
|
|
* actual filename. If we don't do anything special, the server's default
|
|
* rules (Alias directives and the like) will continue to be followed.
|
|
*
|
|
* This is a RUN_FIRST hook.
|
|
*/
|
|
static int x_translate_name(request_rec *r)
|
|
{
|
|
/*
|
|
* We don't actually *do* anything here, except note the fact that we were
|
|
* called.
|
|
*/
|
|
trace_request(r, "x_translate_name()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine maps r->filename to a physical file on disk. Useful for
|
|
* overriding default core behavior, including skipping mapping for
|
|
* requests that are not file based.
|
|
*
|
|
* This is a RUN_FIRST hook.
|
|
*/
|
|
static int x_map_to_storage(request_rec *r)
|
|
{
|
|
/*
|
|
* We don't actually *do* anything here, except note the fact that we were
|
|
* called.
|
|
*/
|
|
trace_request(r, "x_map_to_storage()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* this routine gives our module another chance to examine the request
|
|
* headers and to take special action. This is the first phase whose
|
|
* hooks' configuration directives can appear inside the <Directory>
|
|
* and similar sections, because at this stage the URI has been mapped
|
|
* to the filename. For example this phase can be used to block evil
|
|
* clients, while little resources were wasted on these.
|
|
*
|
|
* This is a RUN_ALL hook.
|
|
*/
|
|
static int x_header_parser(request_rec *r)
|
|
{
|
|
/*
|
|
* We don't actually *do* anything here, except note the fact that we were
|
|
* called.
|
|
*/
|
|
trace_request(r, "x_header_parser()");
|
|
return DECLINED;
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine is called to check for any module-specific restrictions placed
|
|
* upon the requested resource. (See the mod_access_compat module for an
|
|
* example.)
|
|
*
|
|
* This is a RUN_ALL hook. The first handler to return a status other than OK
|
|
* or DECLINED (for instance, HTTP_FORBIDDEN) aborts the callback chain.
|
|
*/
|
|
static int x_check_access(request_rec *r)
|
|
{
|
|
trace_request(r, "x_check_access()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to check the authentication information sent with
|
|
* the request (such as looking up the user in a database and verifying that
|
|
* the [encrypted] password sent matches the one in the database).
|
|
*
|
|
* This is a RUN_FIRST hook. The return value is OK, DECLINED, or some
|
|
* HTTP_mumble error (typically HTTP_UNAUTHORIZED).
|
|
*/
|
|
static int x_check_authn(request_rec *r)
|
|
{
|
|
/*
|
|
* Don't do anything except log the call.
|
|
*/
|
|
trace_request(r, "x_check_authn()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to check to see if the resource being requested
|
|
* requires authorisation.
|
|
*
|
|
* This is a RUN_FIRST hook. The return value is OK, DECLINED, or
|
|
* HTTP_mumble. If we return OK, no other modules are called during this
|
|
* phase.
|
|
*
|
|
* If *all* modules return DECLINED, the request is aborted with a server
|
|
* error.
|
|
*/
|
|
static int x_check_authz(request_rec *r)
|
|
{
|
|
/*
|
|
* Log the call and return OK, or access will be denied (even though we
|
|
* didn't actually do anything).
|
|
*/
|
|
trace_request(r, "x_check_authz()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to determine and/or set the various document type
|
|
* information bits, like Content-type (via r->content_type), language, et
|
|
* cetera.
|
|
*
|
|
* This is a RUN_FIRST hook.
|
|
*/
|
|
static int x_type_checker(request_rec *r)
|
|
{
|
|
/*
|
|
* Log the call, but don't do anything else - and report truthfully that
|
|
* we didn't do anything.
|
|
*/
|
|
trace_request(r, "x_type_checker()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to perform any module-specific fixing of header
|
|
* fields, et cetera. It is invoked just before any content-handler.
|
|
*
|
|
* This is a RUN_ALL HOOK.
|
|
*/
|
|
static int x_fixups(request_rec *r)
|
|
{
|
|
/*
|
|
* Log the call and exit.
|
|
*/
|
|
trace_request(r, "x_fixups()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to perform any module-specific logging activities
|
|
* over and above the normal server things.
|
|
*
|
|
* This is a RUN_ALL hook.
|
|
*/
|
|
static int x_log_transaction(request_rec *r)
|
|
{
|
|
trace_request(r, "x_log_transaction()");
|
|
return DECLINED;
|
|
}
|
|
|
|
#ifdef HAVE_UNIX_SUEXEC
|
|
|
|
/*
|
|
* This routine is called to find out under which user id to run suexec
|
|
* Unless our module runs CGI programs, there is no reason for us to
|
|
* mess with this information.
|
|
*
|
|
* This is a RUN_FIRST hook. The return value is a pointer to an
|
|
* ap_unix_identity_t or NULL.
|
|
*/
|
|
static ap_unix_identity_t *x_get_suexec_identity(const request_rec *r)
|
|
{
|
|
trace_request(r, "x_get_suexec_identity()");
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This routine is called to create a connection. This hook is implemented
|
|
* by the Apache core: there is no known reason a module should override
|
|
* it.
|
|
*
|
|
* This is a RUN_FIRST hook.
|
|
*
|
|
* Return NULL to decline, a valid conn_rec pointer to accept.
|
|
*/
|
|
static conn_rec *x_create_connection(apr_pool_t *p, server_rec *server,
|
|
apr_socket_t *csd, long conn_id,
|
|
void *sbh, apr_bucket_alloc_t *alloc)
|
|
{
|
|
trace_nocontext(p, __FILE__, __LINE__, "x_create_connection()");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This hook is defined in server/core.c, but it is not actually called
|
|
* or documented.
|
|
*
|
|
* This is a RUN_ALL hook.
|
|
*/
|
|
static int x_get_mgmt_items(apr_pool_t *p, const char *val, apr_hash_t *ht)
|
|
{
|
|
/* We have nothing to do here but trace the call, and no context
|
|
* in which to trace it.
|
|
*/
|
|
trace_nocontext(p, __FILE__, __LINE__, "x_check_config()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine gets called shortly after the request_rec structure
|
|
* is created. It provides the opportunity to manipulae the request
|
|
* at a very early stage.
|
|
*
|
|
* This is a RUN_ALL hook.
|
|
*/
|
|
static int x_create_request(request_rec *r)
|
|
{
|
|
/*
|
|
* We have a request_rec, but it is not filled in enough to give
|
|
* us a usable configuration. So, add a trace without context.
|
|
*/
|
|
trace_nocontext( r->pool, __FILE__, __LINE__, "x_create_request()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This routine gets called during the startup of the MPM.
|
|
* No known existing module implements this hook.
|
|
*
|
|
* This is a RUN_ALL hook.
|
|
*/
|
|
static int x_pre_mpm(apr_pool_t *p, ap_scoreboard_e sb_type)
|
|
{
|
|
trace_nocontext(p, __FILE__, __LINE__, "x_pre_mpm()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*
|
|
* This hook gets run periodically by a maintenance function inside
|
|
* the MPM. Its exact purpose is unknown and undocumented at this time.
|
|
*
|
|
* This is a RUN_ALL hook.
|
|
*/
|
|
static int x_monitor(apr_pool_t *p, server_rec *s)
|
|
{
|
|
trace_nocontext(p, __FILE__, __LINE__, "x_monitor()");
|
|
return DECLINED;
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* */
|
|
/* Which functions are responsible for which hooks in the server. */
|
|
/* */
|
|
/*--------------------------------------------------------------------------*/
|
|
/*
|
|
* Each function our module provides to handle a particular hook is
|
|
* specified here. The functions are registered using
|
|
* ap_hook_foo(name, predecessors, successors, position)
|
|
* where foo is the name of the hook.
|
|
*
|
|
* The args are as follows:
|
|
* name -> the name of the function to call.
|
|
* predecessors -> a list of modules whose calls to this hook must be
|
|
* invoked before this module.
|
|
* successors -> a list of modules whose calls to this hook must be
|
|
* invoked after this module.
|
|
* position -> The relative position of this module. One of
|
|
* APR_HOOK_FIRST, APR_HOOK_MIDDLE, or APR_HOOK_LAST.
|
|
* Most modules will use APR_HOOK_MIDDLE. If multiple
|
|
* modules use the same relative position, Apache will
|
|
* determine which to call first.
|
|
* If your module relies on another module to run first,
|
|
* or another module running after yours, use the
|
|
* predecessors and/or successors.
|
|
*
|
|
* The number in brackets indicates the order in which the routine is called
|
|
* during request processing. Note that not all routines are necessarily
|
|
* called (such as if a resource doesn't have access restrictions).
|
|
* The actual delivery of content to the browser [9] is not handled by
|
|
* a hook; see the handler declarations below.
|
|
*/
|
|
static void x_register_hooks(apr_pool_t *p)
|
|
{
|
|
trace = NULL;
|
|
ap_hook_pre_config(x_pre_config, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_check_config(x_check_config, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_test_config(x_test_config, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_open_logs(x_open_logs, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_post_config(x_post_config, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_child_init(x_child_init, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_handler(x_handler, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_quick_handler(x_quick_handler, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_pre_connection(x_pre_connection, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_process_connection(x_process_connection, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_pre_read_request(x_pre_read_request, NULL, NULL,
|
|
APR_HOOK_MIDDLE);
|
|
/* [1] post read_request handling */
|
|
ap_hook_post_read_request(x_post_read_request, NULL, NULL,
|
|
APR_HOOK_MIDDLE);
|
|
ap_hook_log_transaction(x_log_transaction, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_http_scheme(x_http_scheme, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_default_port(x_default_port, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_pre_translate_name(x_pre_translate_name, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_translate_name(x_translate_name, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_map_to_storage(x_map_to_storage, NULL,NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_header_parser(x_header_parser, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_fixups(x_fixups, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_type_checker(x_type_checker, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_check_access(x_check_access, NULL, NULL, APR_HOOK_MIDDLE,
|
|
AP_AUTH_INTERNAL_PER_CONF);
|
|
ap_hook_check_authn(x_check_authn, NULL, NULL, APR_HOOK_MIDDLE,
|
|
AP_AUTH_INTERNAL_PER_CONF);
|
|
ap_hook_check_authz(x_check_authz, NULL, NULL, APR_HOOK_MIDDLE,
|
|
AP_AUTH_INTERNAL_PER_CONF);
|
|
ap_hook_insert_filter(x_insert_filter, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_insert_error_filter(x_insert_error_filter, NULL, NULL, APR_HOOK_MIDDLE);
|
|
#ifdef HAVE_UNIX_SUEXEC
|
|
ap_hook_get_suexec_identity(x_get_suexec_identity, NULL, NULL, APR_HOOK_MIDDLE);
|
|
#endif
|
|
ap_hook_create_connection(x_create_connection, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_get_mgmt_items(x_get_mgmt_items, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_create_request(x_create_request, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_pre_mpm(x_pre_mpm, NULL, NULL, APR_HOOK_MIDDLE);
|
|
ap_hook_monitor(x_monitor, NULL, NULL, APR_HOOK_MIDDLE);
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* */
|
|
/* All of the routines have been declared now. Here's the list of */
|
|
/* directives specific to our module, and information about where they */
|
|
/* may appear and how the command parser should pass them to us for */
|
|
/* processing. Note that care must be taken to ensure that there are NO */
|
|
/* collisions of directive names between modules. */
|
|
/* */
|
|
/*--------------------------------------------------------------------------*/
|
|
/*
|
|
* List of directives specific to our module.
|
|
*/
|
|
static const command_rec x_cmds[] =
|
|
{
|
|
AP_INIT_NO_ARGS(
|
|
"Example", /* directive name */
|
|
cmd_example, /* config action routine */
|
|
NULL, /* argument to include in call */
|
|
OR_OPTIONS, /* where available */
|
|
"Example directive - no arguments" /* directive description */
|
|
),
|
|
{NULL}
|
|
};
|
|
/*--------------------------------------------------------------------------*/
|
|
/* */
|
|
/* Finally, the list of callback routines and data structures that provide */
|
|
/* the static hooks into our module from the other parts of the server. */
|
|
/* */
|
|
/*--------------------------------------------------------------------------*/
|
|
/*
|
|
* Module definition for configuration. If a particular callback is not
|
|
* needed, replace its routine name below with the word NULL.
|
|
*/
|
|
AP_DECLARE_MODULE(example_hooks) =
|
|
{
|
|
STANDARD20_MODULE_STUFF,
|
|
x_create_dir_config, /* per-directory config creator */
|
|
x_merge_dir_config, /* dir config merger */
|
|
x_create_server_config, /* server config creator */
|
|
x_merge_server_config, /* server config merger */
|
|
x_cmds, /* command table */
|
|
x_register_hooks, /* set up other request processing hooks */
|
|
};
|