1098 lines
34 KiB
C
1098 lines
34 KiB
C
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership.
|
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
* (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "apr_lib.h"
|
|
#include "apu.h"
|
|
#include "apu_config.h"
|
|
#include "apu_errno.h"
|
|
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "apr_strings.h"
|
|
#include "apr_time.h"
|
|
#include "apr_buckets.h"
|
|
|
|
#include "apr_crypto_internal.h"
|
|
|
|
#if APU_HAVE_CRYPTO
|
|
|
|
#include <prerror.h>
|
|
|
|
#ifdef HAVE_NSS_NSS_H
|
|
#include <nss/nss.h>
|
|
#endif
|
|
#ifdef HAVE_NSS_H
|
|
#include <nss.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_NSS_PK11PUB_H
|
|
#include <nss/pk11pub.h>
|
|
#endif
|
|
#ifdef HAVE_PK11PUB_H
|
|
#include <pk11pub.h>
|
|
#endif
|
|
|
|
struct apr_crypto_t {
|
|
apr_pool_t *pool;
|
|
const apr_crypto_driver_t *provider;
|
|
apu_err_t *result;
|
|
apr_crypto_config_t *config;
|
|
apr_hash_t *types;
|
|
apr_hash_t *modes;
|
|
};
|
|
|
|
struct apr_crypto_config_t {
|
|
void *opaque;
|
|
};
|
|
|
|
struct apr_crypto_key_t {
|
|
apr_pool_t *pool;
|
|
const apr_crypto_driver_t *provider;
|
|
const apr_crypto_t *f;
|
|
CK_MECHANISM_TYPE cipherMech;
|
|
SECOidTag cipherOid;
|
|
PK11SymKey *symKey;
|
|
int ivSize;
|
|
int keyLength;
|
|
};
|
|
|
|
struct apr_crypto_block_t {
|
|
apr_pool_t *pool;
|
|
const apr_crypto_driver_t *provider;
|
|
const apr_crypto_t *f;
|
|
PK11Context *ctx;
|
|
apr_crypto_key_t *key;
|
|
SECItem *secParam;
|
|
int blockSize;
|
|
};
|
|
|
|
static struct apr_crypto_block_key_type_t key_types[] =
|
|
{
|
|
{ APR_KEY_3DES_192, 24, 8, 8 },
|
|
{ APR_KEY_AES_128, 16, 16, 16 },
|
|
{ APR_KEY_AES_192, 24, 16, 16 },
|
|
{ APR_KEY_AES_256, 32, 16, 16 } };
|
|
|
|
static struct apr_crypto_block_key_mode_t key_modes[] =
|
|
{
|
|
{ APR_MODE_ECB },
|
|
{ APR_MODE_CBC } };
|
|
|
|
/* sufficient space to wrap a key */
|
|
#define BUFFER_SIZE 128
|
|
|
|
/**
|
|
* Fetch the most recent error from this driver.
|
|
*/
|
|
static apr_status_t crypto_error(const apu_err_t **result,
|
|
const apr_crypto_t *f)
|
|
{
|
|
*result = f->result;
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* Shutdown the crypto library and release resources.
|
|
*
|
|
* It is safe to shut down twice.
|
|
*/
|
|
static apr_status_t crypto_shutdown(void)
|
|
{
|
|
if (NSS_IsInitialized()) {
|
|
SECStatus s = NSS_Shutdown();
|
|
if (s != SECSuccess) {
|
|
fprintf(stderr, "NSS failed to shutdown, possible leak: %d: %s",
|
|
PR_GetError(), PR_ErrorToName(s));
|
|
return APR_EINIT;
|
|
}
|
|
}
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
static apr_status_t crypto_shutdown_helper(void *data)
|
|
{
|
|
return crypto_shutdown();
|
|
}
|
|
|
|
/**
|
|
* Initialise the crypto library and perform one time initialisation.
|
|
*/
|
|
static apr_status_t crypto_init(apr_pool_t *pool, const char *params,
|
|
const apu_err_t **result)
|
|
{
|
|
SECStatus s;
|
|
const char *dir = NULL;
|
|
const char *keyPrefix = NULL;
|
|
const char *certPrefix = NULL;
|
|
const char *secmod = NULL;
|
|
int noinit = 0;
|
|
PRUint32 flags = 0;
|
|
|
|
struct {
|
|
const char *field;
|
|
const char *value;
|
|
int set;
|
|
} fields[] = {
|
|
{ "dir", NULL, 0 },
|
|
{ "key3", NULL, 0 },
|
|
{ "cert7", NULL, 0 },
|
|
{ "secmod", NULL, 0 },
|
|
{ "noinit", NULL, 0 },
|
|
{ NULL, NULL, 0 }
|
|
};
|
|
const char *ptr;
|
|
size_t klen;
|
|
char **elts = NULL;
|
|
char *elt;
|
|
int i = 0, j;
|
|
apr_status_t status;
|
|
|
|
if (params) {
|
|
if (APR_SUCCESS != (status = apr_tokenize_to_argv(params, &elts, pool))) {
|
|
return status;
|
|
}
|
|
while ((elt = elts[i])) {
|
|
ptr = strchr(elt, '=');
|
|
if (ptr) {
|
|
for (klen = ptr - elt; klen && apr_isspace(elt[klen - 1]); --klen)
|
|
;
|
|
ptr++;
|
|
}
|
|
else {
|
|
for (klen = strlen(elt); klen && apr_isspace(elt[klen - 1]); --klen)
|
|
;
|
|
}
|
|
elt[klen] = 0;
|
|
|
|
for (j = 0; fields[j].field != NULL; ++j) {
|
|
if (klen && !strcasecmp(fields[j].field, elt)) {
|
|
fields[j].set = 1;
|
|
if (ptr) {
|
|
fields[j].value = ptr;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
i++;
|
|
}
|
|
dir = fields[0].value;
|
|
keyPrefix = fields[1].value;
|
|
certPrefix = fields[2].value;
|
|
secmod = fields[3].value;
|
|
noinit = fields[4].set;
|
|
}
|
|
|
|
/* if we've been asked to bypass, do so here */
|
|
if (noinit) {
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/* sanity check - we can only initialise NSS once */
|
|
if (NSS_IsInitialized()) {
|
|
return APR_EREINIT;
|
|
}
|
|
|
|
if (keyPrefix || certPrefix || secmod) {
|
|
s = NSS_Initialize(dir, certPrefix, keyPrefix, secmod, flags);
|
|
}
|
|
else if (dir) {
|
|
s = NSS_InitReadWrite(dir);
|
|
}
|
|
else {
|
|
s = NSS_NoDB_Init(NULL);
|
|
}
|
|
if (s != SECSuccess) {
|
|
if (result) {
|
|
/* Note: all memory must be owned by the caller, in case we're unloaded */
|
|
apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
|
|
err->rc = PR_GetError();
|
|
err->msg = apr_pstrdup(pool, PR_ErrorToName(s));
|
|
err->reason = apr_pstrdup(pool, "Error during 'nss' initialisation");
|
|
*result = err;
|
|
}
|
|
|
|
return APR_ECRYPT;
|
|
}
|
|
|
|
apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper,
|
|
apr_pool_cleanup_null);
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Clean encryption / decryption context.
|
|
* @note After cleanup, a context is free to be reused if necessary.
|
|
* @param f The context to use.
|
|
* @return Returns APR_ENOTIMPL if not supported.
|
|
*/
|
|
static apr_status_t crypto_block_cleanup(apr_crypto_block_t *block)
|
|
{
|
|
|
|
if (block->secParam) {
|
|
SECITEM_FreeItem(block->secParam, PR_TRUE);
|
|
block->secParam = NULL;
|
|
}
|
|
|
|
if (block->ctx) {
|
|
PK11_DestroyContext(block->ctx, PR_TRUE);
|
|
block->ctx = NULL;
|
|
}
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
static apr_status_t crypto_block_cleanup_helper(void *data)
|
|
{
|
|
apr_crypto_block_t *block = (apr_crypto_block_t *) data;
|
|
return crypto_block_cleanup(block);
|
|
}
|
|
|
|
static apr_status_t crypto_key_cleanup(void *data)
|
|
{
|
|
apr_crypto_key_t *key = data;
|
|
if (key->symKey) {
|
|
PK11_FreeSymKey(key->symKey);
|
|
key->symKey = NULL;
|
|
}
|
|
return APR_SUCCESS;
|
|
}
|
|
/**
|
|
* @brief Clean encryption / decryption context.
|
|
* @note After cleanup, a context is free to be reused if necessary.
|
|
* @param f The context to use.
|
|
* @return Returns APR_ENOTIMPL if not supported.
|
|
*/
|
|
static apr_status_t crypto_cleanup(apr_crypto_t *f)
|
|
{
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
static apr_status_t crypto_cleanup_helper(void *data)
|
|
{
|
|
apr_crypto_t *f = (apr_crypto_t *) data;
|
|
return crypto_cleanup(f);
|
|
}
|
|
|
|
/**
|
|
* @brief Create a context for supporting encryption. Keys, certificates,
|
|
* algorithms and other parameters will be set per context. More than
|
|
* one context can be created at one time. A cleanup will be automatically
|
|
* registered with the given pool to guarantee a graceful shutdown.
|
|
* @param f - context pointer will be written here
|
|
* @param provider - provider to use
|
|
* @param params - parameter string
|
|
* @param pool - process pool
|
|
* @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
|
|
* if the engine cannot be initialised.
|
|
*/
|
|
static apr_status_t crypto_make(apr_crypto_t **ff,
|
|
const apr_crypto_driver_t *provider, const char *params,
|
|
apr_pool_t *pool)
|
|
{
|
|
apr_crypto_config_t *config = NULL;
|
|
apr_crypto_t *f;
|
|
|
|
f = apr_pcalloc(pool, sizeof(apr_crypto_t));
|
|
if (!f) {
|
|
return APR_ENOMEM;
|
|
}
|
|
*ff = f;
|
|
f->pool = pool;
|
|
f->provider = provider;
|
|
config = f->config = apr_pcalloc(pool, sizeof(apr_crypto_config_t));
|
|
if (!config) {
|
|
return APR_ENOMEM;
|
|
}
|
|
f->result = apr_pcalloc(pool, sizeof(apu_err_t));
|
|
if (!f->result) {
|
|
return APR_ENOMEM;
|
|
}
|
|
|
|
f->types = apr_hash_make(pool);
|
|
if (!f->types) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_types[0]));
|
|
apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_types[1]));
|
|
apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_types[2]));
|
|
apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_types[3]));
|
|
|
|
f->modes = apr_hash_make(pool);
|
|
if (!f->modes) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(key_modes[0]));
|
|
apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(key_modes[1]));
|
|
|
|
apr_pool_cleanup_register(pool, f, crypto_cleanup_helper,
|
|
apr_pool_cleanup_null);
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Get a hash table of key types, keyed by the name of the type against
|
|
* a pointer to apr_crypto_block_key_type_t.
|
|
*
|
|
* @param types - hashtable of key types keyed to constants.
|
|
* @param f - encryption context
|
|
* @return APR_SUCCESS for success
|
|
*/
|
|
static apr_status_t crypto_get_block_key_types(apr_hash_t **types,
|
|
const apr_crypto_t *f)
|
|
{
|
|
*types = f->types;
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Get a hash table of key modes, keyed by the name of the mode against
|
|
* a pointer to apr_crypto_block_key_mode_t.
|
|
*
|
|
* @param modes - hashtable of key modes keyed to constants.
|
|
* @param f - encryption context
|
|
* @return APR_SUCCESS for success
|
|
*/
|
|
static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes,
|
|
const apr_crypto_t *f)
|
|
{
|
|
*modes = f->modes;
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Work out which mechanism to use.
|
|
*/
|
|
static apr_status_t crypto_cipher_mechanism(apr_crypto_key_t *key,
|
|
const apr_crypto_block_key_type_e type,
|
|
const apr_crypto_block_key_mode_e mode, const int doPad)
|
|
{
|
|
|
|
/* decide on what cipher mechanism we will be using */
|
|
switch (type) {
|
|
|
|
case (APR_KEY_3DES_192):
|
|
if (APR_MODE_CBC == mode) {
|
|
key->cipherOid = SEC_OID_DES_EDE3_CBC;
|
|
}
|
|
else if (APR_MODE_ECB == mode) {
|
|
return APR_ENOCIPHER;
|
|
/* No OID for CKM_DES3_ECB; */
|
|
}
|
|
key->keyLength = 24;
|
|
break;
|
|
case (APR_KEY_AES_128):
|
|
if (APR_MODE_CBC == mode) {
|
|
key->cipherOid = SEC_OID_AES_128_CBC;
|
|
}
|
|
else {
|
|
key->cipherOid = SEC_OID_AES_128_ECB;
|
|
}
|
|
key->keyLength = 16;
|
|
break;
|
|
case (APR_KEY_AES_192):
|
|
if (APR_MODE_CBC == mode) {
|
|
key->cipherOid = SEC_OID_AES_192_CBC;
|
|
}
|
|
else {
|
|
key->cipherOid = SEC_OID_AES_192_ECB;
|
|
}
|
|
key->keyLength = 24;
|
|
break;
|
|
case (APR_KEY_AES_256):
|
|
if (APR_MODE_CBC == mode) {
|
|
key->cipherOid = SEC_OID_AES_256_CBC;
|
|
}
|
|
else {
|
|
key->cipherOid = SEC_OID_AES_256_ECB;
|
|
}
|
|
key->keyLength = 32;
|
|
break;
|
|
default:
|
|
/* unknown key type, give up */
|
|
return APR_EKEYTYPE;
|
|
}
|
|
|
|
/* AES_128_CBC --> CKM_AES_CBC --> CKM_AES_CBC_PAD */
|
|
key->cipherMech = PK11_AlgtagToMechanism(key->cipherOid);
|
|
if (key->cipherMech == CKM_INVALID_MECHANISM) {
|
|
return APR_ENOCIPHER;
|
|
}
|
|
if (doPad) {
|
|
CK_MECHANISM_TYPE paddedMech;
|
|
paddedMech = PK11_GetPadMechanism(key->cipherMech);
|
|
if (CKM_INVALID_MECHANISM == paddedMech
|
|
|| key->cipherMech == paddedMech) {
|
|
return APR_EPADDING;
|
|
}
|
|
key->cipherMech = paddedMech;
|
|
}
|
|
|
|
key->ivSize = PK11_GetIVLength(key->cipherMech);
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Create a key from the provided secret or passphrase. The key is cleaned
|
|
* up when the context is cleaned, and may be reused with multiple encryption
|
|
* or decryption operations.
|
|
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
|
|
* *key is not NULL, *key must point at a previously created structure.
|
|
* @param key The key returned, see note.
|
|
* @param rec The key record, from which the key will be derived.
|
|
* @param f The context to use.
|
|
* @param p The pool to use.
|
|
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
|
|
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
|
|
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
|
|
* not known. APR_EPADDING if padding was requested but is not supported.
|
|
* APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_key(apr_crypto_key_t **k,
|
|
const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
|
|
{
|
|
apr_status_t rv = APR_SUCCESS;
|
|
PK11SlotInfo *slot, *tslot;
|
|
PK11SymKey *tkey;
|
|
SECItem secretItem;
|
|
SECItem wrappedItem;
|
|
SECItem *secParam;
|
|
PK11Context *ctx;
|
|
SECStatus s;
|
|
SECItem passItem;
|
|
SECItem saltItem;
|
|
SECAlgorithmID *algid;
|
|
void *wincx = NULL; /* what is wincx? */
|
|
apr_crypto_key_t *key;
|
|
int blockSize;
|
|
int remainder;
|
|
|
|
key = *k;
|
|
if (!key) {
|
|
*k = key = apr_pcalloc(p, sizeof *key);
|
|
if (!key) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_pool_cleanup_register(p, key, crypto_key_cleanup,
|
|
apr_pool_cleanup_null);
|
|
}
|
|
|
|
key->f = f;
|
|
key->provider = f->provider;
|
|
|
|
/* decide on what cipher mechanism we will be using */
|
|
rv = crypto_cipher_mechanism(key, rec->type, rec->mode, rec->pad);
|
|
if (APR_SUCCESS != rv) {
|
|
return rv;
|
|
}
|
|
|
|
switch (rec->ktype) {
|
|
|
|
case APR_CRYPTO_KTYPE_PASSPHRASE: {
|
|
|
|
/* Turn the raw passphrase and salt into SECItems */
|
|
passItem.data = (unsigned char*) rec->k.passphrase.pass;
|
|
passItem.len = rec->k.passphrase.passLen;
|
|
saltItem.data = (unsigned char*) rec->k.passphrase.salt;
|
|
saltItem.len = rec->k.passphrase.saltLen;
|
|
|
|
/* generate the key */
|
|
/* pbeAlg and cipherAlg are the same. */
|
|
algid = PK11_CreatePBEV2AlgorithmID(key->cipherOid, key->cipherOid,
|
|
SEC_OID_HMAC_SHA1, key->keyLength,
|
|
rec->k.passphrase.iterations, &saltItem);
|
|
if (algid) {
|
|
slot = PK11_GetBestSlot(key->cipherMech, wincx);
|
|
if (slot) {
|
|
key->symKey = PK11_PBEKeyGen(slot, algid, &passItem, PR_FALSE,
|
|
wincx);
|
|
PK11_FreeSlot(slot);
|
|
}
|
|
SECOID_DestroyAlgorithmID(algid, PR_TRUE);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case APR_CRYPTO_KTYPE_SECRET: {
|
|
|
|
/*
|
|
* NSS is by default in FIPS mode, which disallows the use of unencrypted
|
|
* symmetrical keys. As per http://permalink.gmane.org/gmane.comp.mozilla.crypto/7947
|
|
* we do the following:
|
|
*
|
|
* 1. Generate a (temporary) symmetric key in NSS.
|
|
* 2. Use that symmetric key to encrypt your symmetric key as data.
|
|
* 3. Unwrap your wrapped symmetric key, using the symmetric key
|
|
* you generated in Step 1 as the unwrapping key.
|
|
*
|
|
* http://permalink.gmane.org/gmane.comp.mozilla.crypto/7947
|
|
*/
|
|
|
|
/* generate the key */
|
|
slot = PK11_GetBestSlot(key->cipherMech, NULL);
|
|
if (slot) {
|
|
unsigned char data[BUFFER_SIZE];
|
|
|
|
/* sanity check - key correct size? */
|
|
if (rec->k.secret.secretLen != key->keyLength) {
|
|
PK11_FreeSlot(slot);
|
|
return APR_EKEYLENGTH;
|
|
}
|
|
|
|
tslot = PK11_GetBestSlot(CKM_AES_ECB, NULL);
|
|
if (tslot) {
|
|
|
|
/* generate a temporary wrapping key */
|
|
tkey = PK11_KeyGen(tslot, CKM_AES_ECB, 0, PK11_GetBestKeyLength(tslot, CKM_AES_ECB), 0);
|
|
|
|
/* prepare the key to wrap */
|
|
secretItem.data = (unsigned char *) rec->k.secret.secret;
|
|
secretItem.len = rec->k.secret.secretLen;
|
|
|
|
/* ensure our key matches the blocksize */
|
|
secParam = PK11_GenerateNewParam(CKM_AES_ECB, tkey);
|
|
blockSize = PK11_GetBlockSize(CKM_AES_ECB, secParam);
|
|
remainder = rec->k.secret.secretLen % blockSize;
|
|
if (remainder) {
|
|
secretItem.data =
|
|
apr_pcalloc(p, rec->k.secret.secretLen + remainder);
|
|
apr_crypto_clear(p, secretItem.data,
|
|
rec->k.secret.secretLen);
|
|
memcpy(secretItem.data, rec->k.secret.secret,
|
|
rec->k.secret.secretLen);
|
|
secretItem.len += remainder;
|
|
}
|
|
|
|
/* prepare a space for the wrapped key */
|
|
wrappedItem.data = data;
|
|
|
|
/* wrap the key */
|
|
ctx = PK11_CreateContextBySymKey(CKM_AES_ECB, CKA_ENCRYPT, tkey,
|
|
secParam);
|
|
if (ctx) {
|
|
s = PK11_CipherOp(ctx, wrappedItem.data,
|
|
(int *) (&wrappedItem.len), BUFFER_SIZE,
|
|
secretItem.data, secretItem.len);
|
|
if (s == SECSuccess) {
|
|
|
|
/* unwrap the key again */
|
|
key->symKey = PK11_UnwrapSymKeyWithFlags(tkey,
|
|
CKM_AES_ECB, NULL, &wrappedItem,
|
|
key->cipherMech, CKA_ENCRYPT,
|
|
rec->k.secret.secretLen, 0);
|
|
|
|
}
|
|
|
|
PK11_DestroyContext(ctx, PR_TRUE);
|
|
}
|
|
|
|
/* clean up */
|
|
SECITEM_FreeItem(secParam, PR_TRUE);
|
|
PK11_FreeSymKey(tkey);
|
|
PK11_FreeSlot(tslot);
|
|
|
|
}
|
|
|
|
PK11_FreeSlot(slot);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
|
|
return APR_ENOKEY;
|
|
|
|
}
|
|
}
|
|
|
|
/* sanity check? */
|
|
if (!key->symKey) {
|
|
PRErrorCode perr = PORT_GetError();
|
|
if (perr) {
|
|
f->result->rc = perr;
|
|
f->result->msg = PR_ErrorToName(perr);
|
|
rv = APR_ENOKEY;
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/**
|
|
* @brief Create a key from the given passphrase. By default, the PBKDF2
|
|
* algorithm is used to generate the key from the passphrase. It is expected
|
|
* that the same pass phrase will generate the same key, regardless of the
|
|
* backend crypto platform used. The key is cleaned up when the context
|
|
* is cleaned, and may be reused with multiple encryption or decryption
|
|
* operations.
|
|
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
|
|
* *key is not NULL, *key must point at a previously created structure.
|
|
* @param key The key returned, see note.
|
|
* @param ivSize The size of the initialisation vector will be returned, based
|
|
* on whether an IV is relevant for this type of crypto.
|
|
* @param pass The passphrase to use.
|
|
* @param passLen The passphrase length in bytes
|
|
* @param salt The salt to use.
|
|
* @param saltLen The salt length in bytes
|
|
* @param type 3DES_192, AES_128, AES_192, AES_256.
|
|
* @param mode Electronic Code Book / Cipher Block Chaining.
|
|
* @param doPad Pad if necessary.
|
|
* @param iterations Iteration count
|
|
* @param f The context to use.
|
|
* @param p The pool to use.
|
|
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
|
|
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
|
|
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
|
|
* not known. APR_EPADDING if padding was requested but is not supported.
|
|
* APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize,
|
|
const char *pass, apr_size_t passLen, const unsigned char * salt,
|
|
apr_size_t saltLen, const apr_crypto_block_key_type_e type,
|
|
const apr_crypto_block_key_mode_e mode, const int doPad,
|
|
const int iterations, const apr_crypto_t *f, apr_pool_t *p)
|
|
{
|
|
apr_status_t rv = APR_SUCCESS;
|
|
PK11SlotInfo * slot;
|
|
SECItem passItem;
|
|
SECItem saltItem;
|
|
SECAlgorithmID *algid;
|
|
void *wincx = NULL; /* what is wincx? */
|
|
apr_crypto_key_t *key = *k;
|
|
|
|
if (!key) {
|
|
*k = key = apr_pcalloc(p, sizeof *key);
|
|
if (!key) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_pool_cleanup_register(p, key, crypto_key_cleanup,
|
|
apr_pool_cleanup_null);
|
|
}
|
|
|
|
key->f = f;
|
|
key->provider = f->provider;
|
|
|
|
/* decide on what cipher mechanism we will be using */
|
|
rv = crypto_cipher_mechanism(key, type, mode, doPad);
|
|
if (APR_SUCCESS != rv) {
|
|
return rv;
|
|
}
|
|
|
|
/* Turn the raw passphrase and salt into SECItems */
|
|
passItem.data = (unsigned char*) pass;
|
|
passItem.len = passLen;
|
|
saltItem.data = (unsigned char*) salt;
|
|
saltItem.len = saltLen;
|
|
|
|
/* generate the key */
|
|
/* pbeAlg and cipherAlg are the same. */
|
|
algid = PK11_CreatePBEV2AlgorithmID(key->cipherOid, key->cipherOid,
|
|
SEC_OID_HMAC_SHA1, key->keyLength, iterations, &saltItem);
|
|
if (algid) {
|
|
slot = PK11_GetBestSlot(key->cipherMech, wincx);
|
|
if (slot) {
|
|
key->symKey = PK11_PBEKeyGen(slot, algid, &passItem, PR_FALSE,
|
|
wincx);
|
|
PK11_FreeSlot(slot);
|
|
}
|
|
SECOID_DestroyAlgorithmID(algid, PR_TRUE);
|
|
}
|
|
|
|
/* sanity check? */
|
|
if (!key->symKey) {
|
|
PRErrorCode perr = PORT_GetError();
|
|
if (perr) {
|
|
f->result->rc = perr;
|
|
f->result->msg = PR_ErrorToName(perr);
|
|
rv = APR_ENOKEY;
|
|
}
|
|
}
|
|
|
|
if (ivSize) {
|
|
*ivSize = key->ivSize;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialise a context for encrypting arbitrary data using the given key.
|
|
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
|
|
* *ctx is not NULL, *ctx must point at a previously created structure.
|
|
* @param ctx The block context returned, see note.
|
|
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
|
|
* an IV will be created at random, in space allocated from the pool.
|
|
* If the buffer pointed to is not NULL, the IV in the buffer will be
|
|
* used.
|
|
* @param key The key structure.
|
|
* @param blockSize The block size of the cipher.
|
|
* @param p The pool to use.
|
|
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
|
|
* Returns APR_EINIT if the backend failed to initialise the context. Returns
|
|
* APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx,
|
|
const unsigned char **iv, const apr_crypto_key_t *key,
|
|
apr_size_t *blockSize, apr_pool_t *p)
|
|
{
|
|
PRErrorCode perr;
|
|
SECItem ivItem;
|
|
unsigned char * usedIv;
|
|
apr_crypto_block_t *block = *ctx;
|
|
if (!block) {
|
|
*ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
|
|
}
|
|
if (!block) {
|
|
return APR_ENOMEM;
|
|
}
|
|
block->f = key->f;
|
|
block->pool = p;
|
|
block->provider = key->provider;
|
|
|
|
apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
|
|
apr_pool_cleanup_null);
|
|
|
|
if (key->ivSize) {
|
|
if (iv == NULL) {
|
|
return APR_ENOIV;
|
|
}
|
|
if (*iv == NULL) {
|
|
SECStatus s;
|
|
usedIv = apr_pcalloc(p, key->ivSize);
|
|
if (!usedIv) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_crypto_clear(p, usedIv, key->ivSize);
|
|
s = PK11_GenerateRandom(usedIv, key->ivSize);
|
|
if (s != SECSuccess) {
|
|
return APR_ENOIV;
|
|
}
|
|
*iv = usedIv;
|
|
}
|
|
else {
|
|
usedIv = (unsigned char *) *iv;
|
|
}
|
|
ivItem.data = usedIv;
|
|
ivItem.len = key->ivSize;
|
|
block->secParam = PK11_ParamFromIV(key->cipherMech, &ivItem);
|
|
}
|
|
else {
|
|
block->secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey);
|
|
}
|
|
block->blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
|
|
block->ctx = PK11_CreateContextBySymKey(key->cipherMech, CKA_ENCRYPT,
|
|
key->symKey, block->secParam);
|
|
|
|
/* did an error occur? */
|
|
perr = PORT_GetError();
|
|
if (perr || !block->ctx) {
|
|
key->f->result->rc = perr;
|
|
key->f->result->msg = PR_ErrorToName(perr);
|
|
return APR_EINIT;
|
|
}
|
|
|
|
if (blockSize) {
|
|
*blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
|
|
}
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Encrypt data provided by in, write it to out.
|
|
* @note The number of bytes written will be written to outlen. If
|
|
* out is NULL, outlen will contain the maximum size of the
|
|
* buffer needed to hold the data, including any data
|
|
* generated by apr_crypto_block_encrypt_finish below. If *out points
|
|
* to NULL, a buffer sufficiently large will be created from
|
|
* the pool provided. If *out points to a not-NULL value, this
|
|
* value will be used as a buffer instead.
|
|
* @param out Address of a buffer to which data will be written,
|
|
* see note.
|
|
* @param outlen Length of the output will be written here.
|
|
* @param in Address of the buffer to read.
|
|
* @param inlen Length of the buffer to read.
|
|
* @param ctx The block context to use.
|
|
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
|
|
* not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_encrypt(unsigned char **out,
|
|
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
|
|
apr_crypto_block_t *block)
|
|
{
|
|
|
|
unsigned char *buffer;
|
|
int outl = (int) *outlen;
|
|
SECStatus s;
|
|
if (!out) {
|
|
*outlen = inlen + block->blockSize;
|
|
return APR_SUCCESS;
|
|
}
|
|
if (!*out) {
|
|
buffer = apr_palloc(block->pool, inlen + block->blockSize);
|
|
if (!buffer) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_crypto_clear(block->pool, buffer, inlen + block->blockSize);
|
|
*out = buffer;
|
|
}
|
|
|
|
s = PK11_CipherOp(block->ctx, *out, &outl, inlen, (unsigned char*) in,
|
|
inlen);
|
|
if (s != SECSuccess) {
|
|
PRErrorCode perr = PORT_GetError();
|
|
if (perr) {
|
|
block->f->result->rc = perr;
|
|
block->f->result->msg = PR_ErrorToName(perr);
|
|
}
|
|
return APR_ECRYPT;
|
|
}
|
|
*outlen = outl;
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Encrypt final data block, write it to out.
|
|
* @note If necessary the final block will be written out after being
|
|
* padded. Typically the final block will be written to the
|
|
* same buffer used by apr_crypto_block_encrypt, offset by the
|
|
* number of bytes returned as actually written by the
|
|
* apr_crypto_block_encrypt() call. After this call, the context
|
|
* is cleaned and can be reused by apr_crypto_block_encrypt_init().
|
|
* @param out Address of a buffer to which data will be written. This
|
|
* buffer must already exist, and is usually the same
|
|
* buffer used by apr_evp_crypt(). See note.
|
|
* @param outlen Length of the output will be written here.
|
|
* @param ctx The block context to use.
|
|
* @return APR_ECRYPT if an error occurred.
|
|
* @return APR_EPADDING if padding was enabled and the block was incorrectly
|
|
* formatted.
|
|
* @return APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_encrypt_finish(unsigned char *out,
|
|
apr_size_t *outlen, apr_crypto_block_t *block)
|
|
{
|
|
|
|
apr_status_t rv = APR_SUCCESS;
|
|
unsigned int outl = *outlen;
|
|
|
|
SECStatus s = PK11_DigestFinal(block->ctx, out, &outl, block->blockSize);
|
|
*outlen = outl;
|
|
|
|
if (s != SECSuccess) {
|
|
PRErrorCode perr = PORT_GetError();
|
|
if (perr) {
|
|
block->f->result->rc = perr;
|
|
block->f->result->msg = PR_ErrorToName(perr);
|
|
}
|
|
rv = APR_ECRYPT;
|
|
}
|
|
crypto_block_cleanup(block);
|
|
|
|
return rv;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Initialise a context for decrypting arbitrary data using the given key.
|
|
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
|
|
* *ctx is not NULL, *ctx must point at a previously created structure.
|
|
* @param ctx The block context returned, see note.
|
|
* @param blockSize The block size of the cipher.
|
|
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
|
|
* an IV will be created at random, in space allocated from the pool.
|
|
* If the buffer is not NULL, the IV in the buffer will be used.
|
|
* @param key The key structure.
|
|
* @param p The pool to use.
|
|
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
|
|
* Returns APR_EINIT if the backend failed to initialise the context. Returns
|
|
* APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx,
|
|
apr_size_t *blockSize, const unsigned char *iv,
|
|
const apr_crypto_key_t *key, apr_pool_t *p)
|
|
{
|
|
PRErrorCode perr;
|
|
apr_crypto_block_t *block = *ctx;
|
|
if (!block) {
|
|
*ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t));
|
|
}
|
|
if (!block) {
|
|
return APR_ENOMEM;
|
|
}
|
|
block->f = key->f;
|
|
block->pool = p;
|
|
block->provider = key->provider;
|
|
|
|
apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper,
|
|
apr_pool_cleanup_null);
|
|
|
|
if (key->ivSize) {
|
|
SECItem ivItem;
|
|
if (iv == NULL) {
|
|
return APR_ENOIV; /* Cannot initialise without an IV */
|
|
}
|
|
ivItem.data = (unsigned char*) iv;
|
|
ivItem.len = key->ivSize;
|
|
block->secParam = PK11_ParamFromIV(key->cipherMech, &ivItem);
|
|
}
|
|
else {
|
|
block->secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey);
|
|
}
|
|
block->blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
|
|
block->ctx = PK11_CreateContextBySymKey(key->cipherMech, CKA_DECRYPT,
|
|
key->symKey, block->secParam);
|
|
|
|
/* did an error occur? */
|
|
perr = PORT_GetError();
|
|
if (perr || !block->ctx) {
|
|
key->f->result->rc = perr;
|
|
key->f->result->msg = PR_ErrorToName(perr);
|
|
return APR_EINIT;
|
|
}
|
|
|
|
if (blockSize) {
|
|
*blockSize = PK11_GetBlockSize(key->cipherMech, block->secParam);
|
|
}
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Decrypt data provided by in, write it to out.
|
|
* @note The number of bytes written will be written to outlen. If
|
|
* out is NULL, outlen will contain the maximum size of the
|
|
* buffer needed to hold the data, including any data
|
|
* generated by apr_crypto_block_decrypt_finish below. If *out points
|
|
* to NULL, a buffer sufficiently large will be created from
|
|
* the pool provided. If *out points to a not-NULL value, this
|
|
* value will be used as a buffer instead.
|
|
* @param out Address of a buffer to which data will be written,
|
|
* see note.
|
|
* @param outlen Length of the output will be written here.
|
|
* @param in Address of the buffer to read.
|
|
* @param inlen Length of the buffer to read.
|
|
* @param ctx The block context to use.
|
|
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
|
|
* not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_decrypt(unsigned char **out,
|
|
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
|
|
apr_crypto_block_t *block)
|
|
{
|
|
|
|
unsigned char *buffer;
|
|
int outl = (int) *outlen;
|
|
SECStatus s;
|
|
if (!out) {
|
|
*outlen = inlen + block->blockSize;
|
|
return APR_SUCCESS;
|
|
}
|
|
if (!*out) {
|
|
buffer = apr_palloc(block->pool, inlen + block->blockSize);
|
|
if (!buffer) {
|
|
return APR_ENOMEM;
|
|
}
|
|
apr_crypto_clear(block->pool, buffer, inlen + block->blockSize);
|
|
*out = buffer;
|
|
}
|
|
|
|
s = PK11_CipherOp(block->ctx, *out, &outl, inlen, (unsigned char*) in,
|
|
inlen);
|
|
if (s != SECSuccess) {
|
|
PRErrorCode perr = PORT_GetError();
|
|
if (perr) {
|
|
block->f->result->rc = perr;
|
|
block->f->result->msg = PR_ErrorToName(perr);
|
|
}
|
|
return APR_ECRYPT;
|
|
}
|
|
*outlen = outl;
|
|
|
|
return APR_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Decrypt final data block, write it to out.
|
|
* @note If necessary the final block will be written out after being
|
|
* padded. Typically the final block will be written to the
|
|
* same buffer used by apr_crypto_block_decrypt, offset by the
|
|
* number of bytes returned as actually written by the
|
|
* apr_crypto_block_decrypt() call. After this call, the context
|
|
* is cleaned and can be reused by apr_crypto_block_decrypt_init().
|
|
* @param out Address of a buffer to which data will be written. This
|
|
* buffer must already exist, and is usually the same
|
|
* buffer used by apr_evp_crypt(). See note.
|
|
* @param outlen Length of the output will be written here.
|
|
* @param ctx The block context to use.
|
|
* @return APR_ECRYPT if an error occurred.
|
|
* @return APR_EPADDING if padding was enabled and the block was incorrectly
|
|
* formatted.
|
|
* @return APR_ENOTIMPL if not implemented.
|
|
*/
|
|
static apr_status_t crypto_block_decrypt_finish(unsigned char *out,
|
|
apr_size_t *outlen, apr_crypto_block_t *block)
|
|
{
|
|
|
|
apr_status_t rv = APR_SUCCESS;
|
|
unsigned int outl = *outlen;
|
|
|
|
SECStatus s = PK11_DigestFinal(block->ctx, out, &outl, block->blockSize);
|
|
*outlen = outl;
|
|
|
|
if (s != SECSuccess) {
|
|
PRErrorCode perr = PORT_GetError();
|
|
if (perr) {
|
|
block->f->result->rc = perr;
|
|
block->f->result->msg = PR_ErrorToName(perr);
|
|
}
|
|
rv = APR_ECRYPT;
|
|
}
|
|
crypto_block_cleanup(block);
|
|
|
|
return rv;
|
|
|
|
}
|
|
|
|
/**
|
|
* NSS module.
|
|
*/
|
|
APU_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_nss_driver = {
|
|
"nss", crypto_init, crypto_make, crypto_get_block_key_types,
|
|
crypto_get_block_key_modes, crypto_passphrase,
|
|
crypto_block_encrypt_init, crypto_block_encrypt,
|
|
crypto_block_encrypt_finish, crypto_block_decrypt_init,
|
|
crypto_block_decrypt, crypto_block_decrypt_finish,
|
|
crypto_block_cleanup, crypto_cleanup, crypto_shutdown, crypto_error,
|
|
crypto_key
|
|
};
|
|
|
|
#endif
|