60 lines
1.5 KiB
Python
60 lines
1.5 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import unittest
|
|
from Cryptotools.Numbers.primeNumber import isPrimeNumber
|
|
from math import sqrt, isqrt, ceil
|
|
from random import choice
|
|
|
|
|
|
class TestBreakingRSA(unittest.TestCase):
|
|
def test_breaking_rsa(self):
|
|
# primes = self._list_primes()
|
|
#p = choice(primes)
|
|
#q = choice(primes)
|
|
self._breaking_rsa(7901, 7817)
|
|
self._breaking_rsa(7907, 7919)
|
|
self._breaking_rsa(7103, 7127) # Works
|
|
# self._breaking_rsa(7103, 7121) # Doesn't works
|
|
|
|
def _breaking_rsa(self, p, q):
|
|
# print(f"p = {p}")
|
|
# print(f"q = {q}")
|
|
n = p * q
|
|
# print(f"n = {n}")
|
|
|
|
# a = isqrt(n) + 1
|
|
a = ceil(sqrt(n))
|
|
iteration = 1
|
|
while True:
|
|
b2 = (a ** 2) - n
|
|
sqb2 = sqrt(b2)
|
|
if b2 % 2 == 0.0:
|
|
b = sqrt(b2)
|
|
break
|
|
a = a + 1
|
|
iteration += 1
|
|
# print(f"Iteration: {iteration}")
|
|
# print(f"a = {a}")
|
|
# print(f"b2 = {b2}")
|
|
# print(f"b = {b}")
|
|
p = int((a + b))
|
|
q = int((a - b))
|
|
#N = (a + b) * (a - b)
|
|
N = p * q
|
|
# print(isPrimeNumber(p))
|
|
# print(isPrimeNumber(q))
|
|
# print(N)
|
|
# print()
|
|
self.assertTrue(N == n)
|
|
|
|
def _list_primes(self):
|
|
l = list()
|
|
i = 100 # We start at 100
|
|
while (len(l) < 1000):
|
|
if isPrimeNumber(i):
|
|
l.append(i)
|
|
i = i + 1
|
|
return l
|
|
|
|
unittest.main()
|