cryptotools/examples/cyclic_test.py
2026-01-11 09:19:22 +01:00

74 lines
1.7 KiB
Python

#!/usr/bin/env python3
from Cryptotools.Groups.cyclic import Cyclic
from Cryptotools.Utils.utils import gcd
from Cryptotools.Numbers.primeNumber import isPrimeNumber
from random import choice
def operation(a, b, n):
return (a ** b) % n
def test1(n):
"""
We test with n is not prime but the order of the group is a prime number
"""
g = list()
g2 = list()
for i in range(1, n):
#if gcd(i, n) == 1:
g.append(i)
print(f"n = {n}")
print(f"G = {g}")
Gsorted = sorted(g)
cyclic = Cyclic(g, n, operation)
order = len(g) # https://en.wikipedia.org/wiki/Order_(group_theory)
print(f"len: {order}")
print(f"prime: {isPrimeNumber(order)}")
g2 = list()
for i in range(1, order):
if gcd(i, order) == 1:
g2.append(i)
pass
print(g2)
# Pick a number in the previous list and check if we can generate all number with it
item = choice(g2)
print()
# if the order is prime, the group is cyclic ?
# Check if we have all items
g3 = list()
for i in range(1, n):
res = operation(i, item, n)
if gcd(res, item) == 1:
g3.append(res)
#print(res)
pass
G2sorted = sorted(g2)
G3sorted = sorted(g3)
print()
# print(f"{g} = {cyclic.generator(g)}")
gen = cyclic.generator()
print(f"All generators: {cyclic.getGenerators()}")
print(f"Is cyclic: {cyclic.isCyclic()}")
print()
print(G2sorted)
print(G3sorted)
if G3sorted == Gsorted:
print(f"Matching with item {item}") # Always match with item 1
# Check if the abelian group is respected
print(f"It is an abelian group: {cyclic.closure()}\n")
test1(19)
test1(12)